{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 002. Photoluminescence and absorption spectra of triplet transitions in the nitrogen-vacancy center in diamond via the one-dimensional configurational coordinate diagram" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we demonstrate how to use `PyPL` to compute vibrationally resolved photoluminescence (PL) and absorption spectra associated with the transition between the triplet excited state ($^3E$) and the triplet ground state ($^3A_2$) of the negatively charged nitrogen-vacancy center NV$^-$ in diamond, using the one-dimensional configurational coordinate diagram (1D-CCD) approach.\n", "\n", "The notebook is organized into two main parts:\n", "\n", "1. Construction of 1D-CCD\n", "\n", "2. Computation of PL and absorption spectra" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Construction of the one-dimensional configurational coordinate diagram" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy import constants\n", "import matplotlib.pyplot as plt\n", "\n", "plt.rcParams.update({'font.size': 12})\n", "\n", "blue = '#4285F4'\n", "red = '#DB4437'\n", "\n", "from pypl.config_coord_1d_solver import config_coord_1d_solver\n", "from pypl.utils import *\n", "import os\n", "\n", "path = os.getcwd()\n", "os.chdir(path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first step is to construct the 1D CCD and extract the mass-weighted displacements and effective phonon frequencies.\n", "\n", "Starting from the equilibrium geometries of the ground state ${}^3\\!A_2$ (`002_nv_diamond_1d_ccd/gs_dft/gs_coord.in`) and the excited state ${}^3\\!E$ (`002_nv_diamond_1d_ccd/es_cdft/es_cdft_010_coord.in`), we perform a linear interpolation between them and compute the energy profiles of both states along the interpolated path.\n", "\n", "Ground-state density functional theory (DFT) calculations for the interpolated configurations are provided in `002_nv_diamond_1d_ccd/gs_1d_ccd/`, where the script `generate.py` generates single-point DFT inputs for each interpolated geometry. Similarly, the excited-state constrained-occupation DFT (CDFT, aka $\\Delta$SCF) calculations are found in `002_nv_diamond_1d_ccd/es_1d_ccd/`. The interpolation path is defined as `np.linspace(-0.2, 1.2, 15)`, where `0.0` corresponds to the equilibrium ground-state geometry and `1.0` to the equilibrium excited-state geometry.\n", "\n", "**Note**: For the interpolation to work, the atoms in the ground-state DFT and excited-state $\\Delta$SCF calculations must appear in the same order." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, we compute the mass-weighted atomic displacement between the ground-state and excited-state geometries." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Unit of coordinates and cell_parameters is Angstrom\n", "atomic_symbols, gs_coord, cell_parameters = parse_atoms_qexml('002_nv_diamond_1d_ccd/gs_dft/pwscf.xml')\n", "atomic_symbols_2, es_coord, cell_parameters_2 = parse_atoms_qexml('002_nv_diamond_1d_ccd/es_cdft/pwscf.xml')\n", "\n", "# Ensure that both sets of atomic coordinates have consistent atomic symbols and cell parameters.\n", "assert atomic_symbols == atomic_symbols_2, 'Mismatch in atomic symbols between ground-state and excited-state structures.'\n", "assert np.max(np.abs(cell_parameters - cell_parameters_2)) < 1e-12, 'Mismatch in cell parameters between ground-state and excited-state structures.'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "mass_list = {'C': 12.0107, 'N': 14.0067}\n", "all_masses = np.array([mass_list[sym] for sym in atomic_symbols])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\Delta Q = 6.9573191451e-01 amu^{0.5} \\AA\n" ] } ], "source": [ "delta_q = np.linalg.norm((es_coord - gs_coord) * all_masses[:, None]**0.5)\n", "print('\\Delta Q = % .10e amu^{0.5} \\AA' % (delta_q))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This displacement ($\\Delta Q$) is comparable to the value obtained from the Huang–Rhys theory using all phonon modes in Tutorial 001, which is approximately $0.65\\ \\text{amu}^{0.5} \\text{Å}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next step, we parse the energies from the single-point DFT and $\\Delta$SCF calculations at each interpolated geometry." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "relative_coordinates = np.linspace(-0.2, 1.2, 15)\n", "\n", "gs_rel_coord = []\n", "es_rel_coord = []\n", "# energies are in eV\n", "gs_energies = np.zeros(relative_coordinates.shape[0])\n", "es_energies = np.zeros(relative_coordinates.shape[0])\n", "\n", "for i in range(relative_coordinates.shape[0]):\n", " fileName = '002_nv_diamond_1d_ccd/gs_1d_ccd/Image-%d/pwscf.xml' % (i + 1)\n", " if os.path.exists(fileName):\n", " gs_rel_coord.append(i)\n", " gs_energies[i] = parse_total_energy_qexml(fileName)\n", " fileName = '002_nv_diamond_1d_ccd/es_1d_ccd/Image-%d/pwscf.xml' % (i + 1)\n", " if os.path.exists(fileName):\n", " es_rel_coord.append(i)\n", " es_energies[i] = parse_total_energy_qexml(fileName)\n", "\n", "# reset the energy zero\n", "ref_energy = np.min(gs_energies)\n", "gs_energies = gs_energies[gs_rel_coord] - np.min(ref_energy)\n", "es_energies = es_energies[es_rel_coord] - np.min(ref_energy)\n", "\n", "gs_1d_coord = delta_q * relative_coordinates[gs_rel_coord]\n", "es_1d_coord = delta_q * relative_coordinates[es_rel_coord]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now plot the 1D CCD and perform a fit to obtain the effective phonon frequencies. The fitting is performed using the points in the vicinity of the local minima on both energy surfaces." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameters for GS curve: [ 4.17627359e-01 -1.34422863e-05]\n", "GS phonon is 59.08890 meV\n", "Parameetrs for ES curve: [0.49472065 1.70587686]\n", "ES phonon is 64.31191 meV\n" ] } ], "source": [ "from scipy.optimize import curve_fit\n", "\n", "def gs_fit_fun(x, a, c):\n", " return a * x**2 + c\n", "\n", "def es_fit_fun(x, a, c):\n", " return a * (x - delta_q) ** 2 + c\n", "\n", "# Ground state phonon\n", "gs_params = curve_fit(gs_fit_fun, gs_1d_coord[:5], gs_energies[:5])[0]\n", "print('Parameters for GS curve: ', gs_params)\n", "gs_fit_energies = gs_fit_fun(gs_1d_coord, gs_params[0], gs_params[1])\n", "\n", "# (rad / s)^2\n", "gs_phonon = 2 * gs_params[0] * constants.eV / (1e-10**2 * constants.physical_constants['atomic mass constant'][0])\n", "# eV^2\n", "gs_phonon *= (constants.hbar**2 / constants.eV**2)\n", "# meV\n", "gs_phonon = np.sqrt(gs_phonon) * 1000\n", "print('GS phonon is %.5f meV' % gs_phonon)\n", "\n", "# Excited state phonon\n", "es_params = curve_fit(es_fit_fun, es_1d_coord[4:], es_energies[4:])[0]\n", "print('Parameters for ES curve: ', es_params)\n", "es_fit_energies = es_fit_fun(es_1d_coord, es_params[0], es_params[1])\n", "\n", "# (rad / s)^2\n", "es_phonon = 2 * es_params[0] * constants.eV / (1e-10**2 * constants.physical_constants['atomic mass constant'][0])\n", "# eV^2\n", "es_phonon *= (constants.hbar**2 / constants.eV**2)\n", "# meV\n", "es_phonon = np.sqrt(es_phonon) * 1000\n", "print('ES phonon is %.5f meV' % es_phonon)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "HR for GS is 3.42111\n", "HR for ES is 3.72351\n" ] } ], "source": [ "gs_hrf = (\n", " delta_q**2 * 1e-10**2 * constants.physical_constants['atomic mass constant'][0]\n", " * gs_phonon * 1e-3 * constants.eV / constants.hbar\n", " / (2 * constants.hbar)\n", ")\n", "print('HR for GS is %.5f' % gs_hrf)\n", "\n", "es_hrf = (\n", " delta_q**2 * 1e-10**2 * constants.physical_constants['atomic mass constant'][0]\n", " * es_phonon * 1e-3 * constants.eV / constants.hbar\n", " / (2 * constants.hbar)\n", ")\n", "print('HR for ES is %.5f' % es_hrf)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAJeCAYAAAAJESRyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqeJJREFUeJzs3Xd4U9UbB/DvzWy696KlhWIZpWzZskdZQkFkg1BEQYYDXCgge/lTRFCQVaZsEaRF9hBZDrbslgLdKx2ZN/f3R2ggNG2TcNt0vJ/nyaO9803pyZtz7hkMx3EcCCGEEMILga0DIIQQQioTSqyEEEIIjyixEkIIITyixEoIIYTwiBIrIYQQwiNKrIQQQgiPKLESQgghPKLESgghhPBIZOsAyjudTocnT57AyckJDMPYOhxCCCE2wHEccnJy4O/vD4Gg+DopJdYSPHnyBIGBgbYOgxBCSDmQkJCAgICAYo+hxFoCJycnAPpfprOzs42jKT+SkpKwfv16jB49Gr6+vrYOhxDykqhMF08ulyMwMNCQE4rD0FzBxZPL5XBxcUF2djYl1udotVrI5XI4OztDJKLvZ4RUdFSmi2dJLqDfHrGKSCSCu7u7rcMghPCEyjR/qFcwsUpmZib27NmDzMxMW4dCCOEBlWn+UGIlVlEqlbh69SqUSqWtQyGE8IDKNH8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqzEKo6Ojmjfvj0cHR1tHQohhAdUpvlD41hLQONYCSGEWJILqMZKrKJSqXD37l2oVCpbh0II4QGVaf5QYiVWycjIwJYtW5CRkWHrUAghPKAyzR9KrIQQQgiPKLESQgghPKLESgghhPCIEiuxilAohJubG4RCoa1DIYTwgMo0f2i4TQlouA0hhBAabkMIIYTYCCVWYpXk5GQsWbIEycnJtg6FEMIDKtP8oYXOiVV0Oh3y8/Oh0+lsHYrFkrN1yFYUfgLiImPg40LfNUnVVJHLdHlDiZVUKcnZOrz1owJqtvA+iRDY8K6Mkish5KXQJwipUrIVnMmkCgBqFiZrsoQQYglKrIQQQgiPKLESq3h4eGDMmDHw8PCwdSiEEB5QmeYPJVZiFYlEgsDAQEgkEluHwqs/77DQ0dBuUgVV1jJtC5RYiVXkcjkOHToEuVxu61B4dfyGFgKGAcdxuJfMguZPIVVFZS3TtkCJlVglLy8P586dQ15enq1DsYiLjIGkiBnbJEJgzhtSAMCdZB3GrVXi7TUK7LqgQXY+JVhSuVXUMl0e0XAbUqX4uAiw4V1ZieNYQ7wFWDBIitjLWvx0TI2fjqnRs5EIUyKkZR0yIaSCocRKqhwfFwF8XIo/Rihg0DxEhOYhImTnczhyTQsBo9+XnqvDr39p0b2BCP5u1OhDCDFGiZWQErjYMxjQXGz4+V6yDnsvabD5Dw0aBwkQ0VCM12oLIRUzhmNodidCqi5KrMQq9vb2aNasGezt7W0dSplrHiLCjslCnPpPi5h/tVjwqwp/hYvwSR8pOI5Dipyj2Z1IhVOVyzTfaNm4EtCycaQkjzJ04Dgg0EOAo9e12HhajUcZRRerH8bYIdSX1rwkpCKhZeNIqdNoNEhMTIRGo7F1KDYX4C5AoIe+KPm6MPB0Yko4g5Dyh8o0fyixEqukpaVh9erVSEtLs3Uo5UpYgBDvdC5+gL2GpUYiUv5QmeYPPWMlpIx9vFWF12qzaF9XiKY1hJCIqIZLSGVCNVZCyljnMCFuJbL4YqcKO8/rm93yVBzUWqrJElIZUI2VEJ4VzO5UVK/gYW0k8HERIC5VByeZfvuOcxrsvaRBm1CRoSYrFlJNlpCKiBIrsQrDMJBIJGAY+vB/kbmzOwV7PWsw6hwmAsMAJ25o8ftVLRztgIldJegaLi50DYDGyRL+UZnmDw23KQENtyFlieM4PEjlcPKmFq1eEaKOvxCHrmhw+aEO7esK0SRYiIxcGidLSFmzJBdQjZWQcoRhGNT0ZlDT+1nPYg7A9UcsDl3RwskOqB8oNJlUAX3zc7aCK3HKRkJI6aGvtcQqqampWLlyJVJTU20dSqUX0UCMDe/IsDrKDq83EeNess7WIZFKiMo0fyixEqtotVqkpqZCq9XaOpQqgWEYhPgIMaaDBLMGFD9ONi2HEi+xHJVp/lBiJaSCKalzybUEfWKNS9XhzC0t8lXUjYKQskTPWAmpZFq+op+H+MwtLdaf0kAoAOoHCNA8RIg2oSLD9IuEkNJBiZWQCqakcbI+zvrEObytBJ3CRLh4n8WFeyw2ndFAoQZGt5cgMUuH24k6NK0hhKOd6RowDekhxDo03KYENNzGNKVSifj4eAQFBcHOzs7W4VQ51iQ9tZaDWgs42jHY/7cG38aqIWCAetUEeLWmEK1DRajpLTBcn4b0VC1UpotHw21IqbOzs0Pt2rVtHUaV5eMisHhIjUTEQPK0xPdpIkbzECEu3mdx8R6L7ec0SM3h8EEPKTLzOBy+pqUhPVUMlWn+2PwrZ05ODj7++GN069YNXl5eYBgGs2bNMuvcDh06gGGYIl9JSUklHhsREVFK76xyy83NxenTp5Gbm2vrUIiVfFwE6N1YjK/esMPeD+wR1UHf2/jKQxbrT9LSYVUNlWn+2LzGmp6ejtWrV6Nhw4bo168f1qxZY/a5K1euhFwuN9qWn5+PiIgING3aFL6+vkb7atasiS1bthhtc3V1tTr2qiwnJwfHjh1DrVq14OjoaOtwyEsSCRk4P523uH1dERZIgc9+VhV5/F/3Wbg5MPBysvl3c8ITKtP8sXliDQoKQmZmJhiGQVpamkWJtV69eoW2RUdHQ6PRYOzYsYX2yWQytGzZ8qXiJaQqcLUvfkjPmhMarDmhga8Lg8bBQnzUUz/HLMdxNNcsqfJsnlj5LoRr166Fo6MjBg0axOt1CSHPLBwsRb5KP9WiUqMvx6yOw/CVCgR5ChAeKEBYgBB1/AWwE1OvY1K12Dyx8unOnTs4ffo0xo4da7Ip4969e3B3d4dcLkdQUBAGDx6ML774AjKZrMRrv9jkLJVKIZVKeYudkPKkpCE91T0E8HERoH3dZx8hGhbo1UiEa4902H5OgzyVfgztzsn2cLFncCuRhZcTA3dHAfU6JpVapUqsa9euBQBERUUV2te2bVsMGjQIderUgUKhQExMDBYvXowzZ87g+PHjEAiKL8SBgYFGP8+cOdPsTlaVkZ2dHerVq0fd8ispc5e+e56dmMHwtvoOUKyOQ3wah7vJLFyeNivP2atCYhYHP1cG1T0Z6nVczlCZ5k+5GsealpYGLy8vq5KWVqtFYGAgPDw8cO3aNbPO+frrrzF16lTs2bMHkZGRJo8pGLuUkJBgNHaJaqyEWCY1R4frCTpce8TirwcsHqYX/dGzfJQU9apVqu/9pIKzZBxrpWlrOXjwIJKSkkx2WirK8OHDAQDnzp0r8VhnZ2ejV1VPqizLQi6Xg2WLqHYQ8gIvJwE61BNhYjcpPutbfPl5f5MK+//WD/lJytLhwj0t0nJ0sLQekJytw+0kttArOZsWKngRlWn+VJqvhGvXroVEIsGIESMsPrekZmBSWEpKClavXo1x48bBz8/P1uGQSmZgCxHqVdOXyz9us1h5RA0AcJEBNb0FaB0qQv9XxdBxHDRaQGqigxQ9x7UMlWn+VIrEmpSUhIMHD6J///7w8PAw+7zo6GgAoCE4hJQz7euKEOKjX0wg8lURWr0ixP0UneElf/rsNzGTw1urFAhwZ1DTW4Ca3gLU8BagVS0hshUcPcclNlEuEmtMTAzy8vKQk5MDALhx4wZ27doFAOjZsyfs7e0RFRWF6Oho3Lt3D0FBQUbnR0dHQ6vVFtkMfPr0acybNw+RkZGoWbMmlEolYmJisHr1anTq1Al9+vQp3TdICDFSUq9jF9mzGqiAYeDvxsDfTYC2L8y452jH4P0eEjx4mnB3nNdAKmLQerJ9Kb8DUp6Ut6Fb5SKxjh8/HvHx8Yafd+7ciZ07dwIAHjx4gODgYLAsC5ZlTT5jWbduHYKDg9GlSxeT1/fz84NQKMScOXOQlpYGhmHwyiuvYPbs2fjoo4+oKZiQMmZNr2NTXOwZ9GokNvzMcRzkimf/X5wTN7T45ZIWvi4M/FwZ+LoKUN1DYOjFbI7y9oFeFZXHJv9ykVjj4uJKPGbDhg3YsGGDyX23bt0q9txatWrht99+syIyQkhpsWYhgZIwDAMX+2f/Xxy1FohP0+H8XR2y8vXbxrQXY1gbCa4msNjyh35mKV9XBn6uAgS4M4bmaaDsPtArQ/IuzfdQHpv8y0ViJRWPr68vpk+fDqFQWPLBhJRD3RqIMLGb/u9XoeaQlMXB8elcMQIGkIiAG491OHZDhzyVfnm95aNkYHUc3tughExiuikb4O8DvSySd0HS4+CFN8d+CjmEyElieUvc5bFGWdoosRKrMAwDkYj+fEj5ZclzXJmEQQ3vZz+HBQgx+w190uU4DjlKIF+lr3GptUBdfwHuJhc/ZOfz7Up4OArgLAP6vypGq1dEiE/T4Z84Fs4yBi72+oUP3B0ZeDiaTiylXRsznfS0APhLeta8h4xcfStCdj4HuUL/allLCC9nAY5c0+LINS3kCg7Z+Rwy88rNVAwG9MlIrJKeno79+/ejT58+FvXEJqSs8PUcl2H0CdD5aSKWSRhMiZDidhKL8euURZ7X6hUhRAIG2fkcRE8bdm4n6fDjUTU0zyWa8EABvh0hg5blMOIHxdOkq4+xpNG2Wfn696ZQc8h6eh+JkNH/VwSIhcU3hz+f9GRcBl5hf8cdYTcoGHezEreG1Q930rD6/9ey+i8KEhGD5GwdUuUcHqQVPy52+SE12KdvdOVofZPB5I1KJGY9+3cTMICvqxRezgJwAOzEgLez/nm4Ssth9wVt8b+oMkaJlVhFrVYjPj4earXa1qEQUqTSeI5rrj5NxAj1NX5U0rW+CF3ChFCooa9xKTgInuY+Vgd0CxchO1+/PSOPQ6q8+NrYX/dZNK8pwvm7LOb8YrzMXy0fAVZF6RNV5Dd54ACIBQzEIkAsBOa/aTx1oRAauHKPIMSztXjvp+gw/xfV08SpT54ejgzWvK1/kD3ke0WhGuO3I+wQHijEL5e02HG+5HV9JSKgmpsAbg7PvgR80kcKkQBPa/UMHKTPnpl3rS9C1/rPUtftJJYSKyGEVGUMw8BeCthLGfi6PtsuFTMY3V5idGxJteIWtfSJu2GQEEuH2kH9tAapZQHZc5NbDW8jgVrLGSVIeymDPHXxidtRCrR8RQiRUN+sLhI+q7kDwKRuErC6gtqxfl3fGl76loA3WogQ0VCERxksZuwq+gv4O50lhb6AhAea33fDkib/skKJlRBCrFAePtAd7fT3cHNg4OZQdDIa0FxscntqTvHX93YR4N3aps8FYLS60Ys8HAXwcARU2tJ9BspXkz+fKLESQogVyuIDvTwk75dVFu/Blk3+plBiJVZxcXFBnz594OJSjv6aCSljpf2BXtrJ+/mkp4QTbgu7QQknAPwmvfJWoyxt5WrZuPLIkqWCCCGkoqkME1CUhSq5bBwpW/n5+fj777+Rn59v61AIIS/Bx0WAUF8hApxVyH1yGQHOKoT6CimpvgT6zRGrZGdnY//+/cjOzrZ1KIQQHlCZ5g8lVkIIIYRHlFgJIYQQHlFiJYQQQnhEiZVYRSKRICgoCBKJpOSDCSHlHpVp/tBwmxLQcBtCCCE03IaUOo7joNVqQd/LCKkcqEzzhxIrsUpSUhLmzZuHpKQkW4dCCOEBlWn+UGIlhBBCeESJlRBCCOERJVZCCCGER5RYCSGEEB7RcJsS0HAb01iWRV5eHhwcHCAUFr3AMiGkYqAyXTxLcgGtx0qsIhQK6YsGIZUIlWn+UFMwsUpmZiZ27tyJzMxMW4dCCOEBlWn+UGIlVlEqlbhx4waUSqWtQyGE8IDKNH8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqzEKk5OTujUqROcnJxsHQohhAdUpvlD41hLQONYCSGE0LJxpNQplUrcunWLehASUklQmeYPJVZilczMTPz888805o2QSoLKNH8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqzEKiKRCF5eXhCJaB0HQioDKtP8oeE2JaDhNoQQQmi4DSGEEGIjlFiJVZKSkrBgwQIkJSXZOhRCCA+oTPOHEiuxCsdxUKvVoCcJhFQOVKb5Q4mVEEII4RElVkIIIYRHlFgJIYQQHtFwmxLQcBvTNBoN0tLS4OnpCbFYbOtwCCEvicp08SzJBTQSmFhFLBbDz8/P1mEQQnhCZZo/1BRMrJKdnY3ffvsN2dnZtg6FEMIDKtP8ocRKrJKfn49Lly4hPz/f1qEQQnhAZZo/lFgJIYQQHlFiJYQQQnhEiZUQQgjhESVWYhUHBwe0bNkSDg4Otg6FEMIDKtP8oXGsJaBxrIQQQirUsnE5OTn4+OOP0a1bN3h5eYFhGMyaNcusczds2ACGYUy+TK3QcOTIEbRq1Qr29vbw9PTEW2+9hZSUFJ7fUdWgVquRkJAAtVpt61AIITygMs0fmyfW9PR0rF69GiqVCv369bPqGuvXr8eff/5p9PLw8DA65uTJk+jRowd8fHywb98+LFu2DEeOHEHnzp2hUql4eCdVS3p6OtatW4f09HRbh0II4QGVaf7YfOaloKAgZGZmgmEYpKWlYc2aNRZfo379+mjWrFmxx0ybNg2hoaHYtWsXRCL9265RowbatGmDdevWYfz48VbFTwghhDzP5jXWgqbb0vT48WNcvHgRI0aMMCRVAGjdujVCQ0Oxd+/eUr0/IYSQqsPmiZUPvXv3hlAohLu7O/r3749r164Z7S/4uUGDBoXObdCgQaHjTZHL5UYvaj4mhBBiSoVOrL6+vpg+fTrWrFmD48ePY86cObh48SJatmyJy5cvG44reGbg7u5e6Bru7u5mPVMIDAyEi4uL4bVgwQL+3kgFJBAIYG9vD4GgQv8JEUKeojLNH5s/Y30ZERERiIiIMPzcrl079OrVC+Hh4ZgxYwb27dtndHxRTc7mNEUnJCQYdbGWSqVWRl05+Pj4YNq0abYOgxDCEyrT/KnQidWU4OBgtG3bFufOnTNsK+ghbKpmmpGRYbIm+yJnZ2cax0oIIaRElbLOz3GcUXNG/fr1AQBXr14tdOzVq1cN+4n5UlJS8N1339E4YEIqCSrT/Kl0ifXBgwf4448/0LJlS8O2atWqoXnz5ti8eTNYljVsP3fuHG7duoX+/fvbItQKjWVZZGZmGv0+CSEVF5Vp/pSLpuCYmBjk5eUhJycHAHDjxg3s2rULANCzZ0/Y29sjKioK0dHRuHfvHoKCggAAXbp0Qbt27dCgQQM4Ozvj6tWrWLx4MRiGwZw5c4zusWjRInTt2hUDBw7EhAkTkJKSgk8//RT169fH6NGjy/YNE0IIqbTKRWIdP3484uPjDT/v3LkTO3fuBKCvgQYHB4NlWbAsi+enNg4PD8f27duxdOlSKBQKeHt7o1OnTvjyyy8RGhpqdI8OHTrg4MGDmDFjBvr06QN7e3v07t0bS5YsqfIdkQghhPCnXCTWuLi4Eo/ZsGEDNmzYYLTtm2++seg+Xbt2RdeuXS06hxBCCLFEpXvGSsqGu7s7hg0bZlaPakJI+Udlmj/losZKKh6pVIpatWrZOgxCCE+oTPOHaqzEKjk5OThx4oShwxkhpGKjMs0fSqzEKrm5uTh58iRyc3NtHQohhAdUpvlDiZUQQgjhESVWQgghhEeUWAkhhBAeUWIlVrGzs0N4eDjs7OxsHQohhAdUpvnDcM9PZUQKkcvlcHFxQXZ2Nq1uQwghVZQluYBqrMQqWq0WGRkZ0Gq1tg6FEMIDKtP8ocRKrJKamorly5cjNTXV1qEQQnhAZZo/lFgJIYQQHlFiJYQQQnhEiZUQQgjhESVWQgghhEc03KYENNyGEEIIDbchhBBCbIQSK7FKWloa1q5di7S0NFuHQgjhAZVp/lBiJVbRaDR49OgRNBqNrUMhhPCAyjR/KLESQgghPKLESgghhPCIEishhBDCI0qsxCqurq6IjIyEq6urrUMhhPCAyjR/RLYOgFRMMpkMDRo0sHUYhBCeUJnmD9VYiVXy8vJw4cIF5OXl2ToUQggPqEzzhxIrsYpcLkdMTAzkcrmtQyGE8IDKNH8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqzEKhKJBCEhIZBIJLYOhRDCAyrT/KFl40pAy8YRQgihZeNIqdPpdFCpVNDpdLYOhRDCAyrT/KHESqySnJyMhQsXIjk52dahEEJ4QGWaP5RYCSGEEB5RYiWEEEJ4RImVEEII4RElVkIIIYRHNNymBDTcxjSWZaFUKmFnZwehUGjrcAghL4nKdPEsyQW0bByxilAohIODg63DIITwhMo0f6gpmFglIyMD27ZtQ0ZGhq1DIYTwgMo0fyixEquoVCrcvn0bKpXK1qEQQnhAZZo/lFgJIYQQHlFiJYQQQnhEiZUQQgjhESVWYhUnJyd069YNTk5Otg6FEMIDKtP8oXGsJaBxrIQQQmjZOFLqFAoFrl+/DoVCYetQCCE8oDLNH0qsxCpZWVnYtWsXsrKybB0KIYQHVKb5Q4mVEEII4RElVkIIIYRHlFgJIYQQHlFiJVYRiUTw9fWFSETrOBBSGVCZ5o/NE2tOTg4+/vhjdOvWDV5eXmAYBrNmzTLr3D179mDIkCGoVasWZDIZgoODMWzYMNy5c6fQsR06dADDMIVeERERPL+jqsHLywvvvPMOvLy8bB0KIYQHVKb5Y/OvJunp6Vi9ejUaNmyIfv36Yc2aNWafu2jRIvj6+mL69OmoWbMmEhISMH/+fDRp0gTnzp1DWFiY0fE1a9bEli1bjLa5urry8TYIIYQQAOUgsQYFBSEzMxMMwyAtLc2ixLp//354e3sbbevUqROCg4PxzTffFLqWTCZDy5YteYm7qktMTMTatWsRFRUFPz8/W4dDCHlJVKb5Y/PEyjCM1ee+mFQBwN/fHwEBAUhISHiZsIgZWJa1dQiEEB5RmeaHzZ+x8u3+/fuIj48v1AwMAPfu3YO7uztEIhFCQkIwffp0mmWEEEIIr2xeY+WTVqtFVFQUHB0d8cEHHxjta9u2LQYNGoQ6depAoVAgJiYGixcvxpkzZ3D8+HEIBMV/x5DL5UY/S6VSSKVS3t8DIYSQiq3SJFaO4xAVFYXTp09j9+7dCAwMNNo/d+5co5979uyJ4OBgTJ06Ffv27UNkZGSx13/xejNnzjS79zIhhJCqo1IkVo7jMHbsWGzevBnR0dHo27evWecNHz4cU6dOxblz50pMrAkJCUYrGlT12qqnpyfGjx8PNzc3W4dCLBB7RYMlB9RF7v96mB0aBQkBAAo1h1/+0uDYdRZJWTpwAFztGYT6CtC3qRgNnx73sqJPqbHxjAZ73reHi731fS4qKo7jcOiKFr/+rUV8mg4CBvB3E2Dka2K0CTX9EZ2Ry2HMT/nIUQAzIqVoX7f4j3KFmsPS31S4m6xDei4HjgN8XBh0qifCgOZiyCSMoUxrRa5YcViFu0k63EvRIU8FTOstQUQDcWm8favsvqDByiNqLBgkRfMQ0+/9t380+F+MGrP6S/FanbJNdRU+sRYk1fXr12Pt2rUYPny4xdcoqRkYAJydnWnZuOeIxWKTncdIxTCttwTVPQr/3Qd56rexOg6f/KzEgxQd3mwpRh1//Yfq4wwOf95hcTWB5S2xVnXfxqpx6IoWbzQXY2wHCViOw4MUDipN0ed8d0gFiZABYN6qn6xO/983movh56ofw3/lIYtNZzS4/JDFkqEyQ5n+N57F0WtKhPgI0CJEiGM3yl+Hpi71RfjpuBqxl7VFJtbYK1q42gOtXin7v9MKnVg5jsPbb7+N9evXY9WqVRg9erRF50dHRwMADcGxQlZWFk6dOoV27drRWOAKqIaXALX9iv7AufJQh+uPdJjWS4KIhs9qKq/WBPo1E0NHyzjz4swtLQ78o8WX/aToUO/Zx/GrNYs+59R/Wlx6wGJydwkW7S+69eF5jnYMvoy0M9rWtIYQGhbYfk6DJ5k62DNynDp1Cm1fa4c9H7gCAG4lsuUysbrYM2gTKsQft1lk53OFWjoepulw47EOA1uIIBKWfStIuUisMTExyMvLQ05ODgDgxo0b2LVrFwD9s1B7e3tERUUhOjoa9+7dQ1BQEABg8uTJWLt2LcaMGYPw8HCcO3fOcE2pVIrGjRsDAE6fPo158+YhMjISNWvWhFKpRExMDFavXo1OnTqhT58+ZfyOKz6FQoF//vkHr776KiXWSkiu0CdOd0fTH0qCEobJJWXpMGylAm93FIPVAQf+0SIzj0MNLwHe7ihBkxqFk3pmHoflv6tw4R4LsRBoWUuE8V0kcLR7di+1lsPG0xocv6FFWg5n+ICN6mB83NAV+Qj2EqBfUxHWntDgYboOPs4MBrUSo0dD4ybNByk6rDupxpUEFioNUN1DgAHNRej+XNPnv/EsPtqixPS+UjxI1eHQFS0Uag51/AWY3F2KQBO1f3PsuaiBrwtjlFSLI1dw+O6QGmPaS+Dt/PKDOlyfJiShAFDkPyvTgKvV1/xwswLZ+Rw+7CnFj0fVuJusg5sDg5FtxYhoKMa5u1qsP6lBQroO/m4MxnWSFKp1PsrQIfqUGn/HschTAX6uDPo2FaNfs2f/Jj0ainDiJotj17WIfNX43zT2ihYAbNZ8XS4S6/jx4xEfH2/4eefOndi5cycA4MGDBwgODgbLsmBZFtxz35T3798PAFi3bh3WrVtndM2goCDExcUBAPz8/CAUCjFnzhykpaWBYRi88sormD17Nj766COzmoIJqUx0On1z74uEAv0HbW0/AUQCYMVhNeQKoHGwAB6OlpeTfX9p4e3MYEIXCXScvnb02XYl/jfcDmEBxsl11m4lOtQToUdDMR6k6rDmuL42Nq23vj8Dx3GYsUuFv+NYDGklRnh1Ie6n6D+AbzzWYfkoO0hEz5Lr/WQdfjyqxpBWYrg5MDj4rxZLf1OjmpsADarr752QrsPkjQq4OjCY2FUCZxmDI9e0WHxAjcw8DoNbSYxiXHtCjbAAAT7qKUGeCvjpuBrTdyqxfpzM8LsrSMIj24oxqp3x+c9jdRxuPNahRYgQO89rsOeiBmk5HHxcGLzeRIyBLUSFxvl//7sKvq4M+jUT4cpDncX/HhzHQccBSg1w/RGLnec16FRPCB8XARLzLb5ckTLyOCw5oMKgVmJ4OTHYe0mLJb+pkSLncOo/LYa2lsDBDth0RoMZu1TYPEEATyf931dcqv7fxNuZwbudJXBzFODSfe3Tv0UOI1/T/06b1BDCx4VB7BXjxMrqOBy5pkXdagIEe9nms71cJNaCBFicDRs2YMOGDRafBwC1atXCb7/9ZnlghFRSE6OVhbYJGODwZw4AAF9XAd7vIcGKw2os+FUFAPBwZNCkhhA9G4oMiakkrA5YMvRZwnu1phBDV+Zjwyk1lgyVGR3bo5EIg1rqPzSb1hDicYYOsVe0mNpLAoZhcOkBi4v3WYzrJDYc16yGEN5ODOb8osLhq1r0avzsAzZbwWHZSBl8XPQfrg2qC/F3fD6OXtca4o8+rYaG1XfaKqgBtqglQq5KiU1nNOjdWGxUEw7yFODzvs+aVIUCYPZeFW4l6lCvmv6azNPfZUlz32Tnc9CwwD/xLG4l6jCmgxheTgKcvKnFqmNq5Cg5RHV4lpjP3dXi5E0WP46RldhiUJTjN1jM26cy/BzRQIQPexad/K0lVwCLBksR+vRxQ6ifEAO+zcfPf2qwcbzMkEQ9HRmMW6vE6f9YRL6q3/bjUTXsJQyWjZTBQap/n81qCKHRAtv+1CCymRhOMgYChkH3cBE2ntHgThKLV3z197pwj0V6LodR7WzX2apcJFZCSNn6tI8E1T2Nv82/+FHdo6EYr9UW4cI9Fjces7j5RIej17Q4clWLt59LbsV5rbbQqBZpL2XQqpYIx29oweo4Qy0PAFq/YvxxVNNbALUWyMwD3B2Bf+L0NbTu4cYfmO3rCrHkN+DvONYosYb4CAxJFQAkIgYB7gIkZz+rqf8Tx6JJsLBQs2r38Gfv+/lmyhc7wtT01p+XnM2hXjX9toZBQsMXlOIUNBjkqYCFg6WGxNw4WIiMPA67LmgwtLW+x26uksM3MWoMbiVGDW/ra2Gv1hRi5Wg75KuAG49ZbD+ngVzB4as3+B3l4OHIGJIqADjLGLg5MPBxYQxJFYDhbzBZrv+3VWs5/B3H4vUmItiJjVtVmtcS4pe/tLjxhEWLp/8mEQ1F2PyHBrGXtYbEeuiKFnZioGMJPaVLEyVWYhUHBwe0adMGDg4lf4CQ8qe6Z/Gdlwo42jHoFCZCpzD9R0Vcqg7Ttiqx7oQGvRoZ1+ZMMfWM1t2RgYYFFGrA8bn+NM4y42PFTz+d1FoOAAO5goNQALg6GB/HMAzcHRnDc+GirgcAEmHB9fTkCtMxejgxhv3FXVP89Feo0lremcvJjgEDwF4KQ1It0DxE3zEnPk2HOv5CrDuphkgA9G0qRq5Sfy+FmjPcO1fJwUFa8hSxTjIGtWXPEri/mwBzf1Hh7G0WDfz4K9NOdoW3iYT6+z9P/LRjkVr/SBTZCg6sDth7SYu9l7Qmry3Pf/a79nERoHGwAEdvaPFOZwkUauDcXRadwkSwl9pu6BYlVmIVZ2dndOnSxdZhkDIW7CVAx3pC7L6oxaMM/Yd+cTJyCyecjFwOYiEgs7AF0lnGgNUBWXmcUXLlOA4ZuRxq+1lek3OWmY4xPUe/zcXe4kuaTSpmUM2dQWZe4fsXdCUpyJNxqTokZXMY+F3hB6H6nsFq7PvQ3uiLijnq+Ot/ZwkZOrStbfsy7WTHQMAAXcNF6NvUdHrydTH+d+7RUIy/Hui/HKTn6pvXezS0bWqjxEqsolKpkJiYCD8/vyo/WUZllJ3PwV76rEbxvIfp+k99jyJ6DD/v9C0W73TmDM3B+SoOf97VIjxQYNQMbI4mwQJsPwccua4f81ng1H8slBp9DcxSTYKFOHObRVqOzqiJ8vdr+ubEuiV8cXhZr9URYdtZDa4/Yo06c124x0ImAYKfNpVO6CpB7guPxe8l67DyiBqjXhOjQXWhxV9UAH1HKwCo5iYoF2XaTsygUZAAd5N0qOktMPn396I2oUI4y/Q9gdNzOQS4MwgPtO0Ya0qsxCoZGRmIjo7GuHHjaImpCuhBqs4wacDz/F0FcHVg8G88ixWH1ehcX4SwagI4yxhk5XM4dl2Li/dZdA0XwcuM4R5CATBtqxIDW4ih44Cf/9QgXwWMes3yLNC0hhCv1hTip2Nq5Ks4hAU87RV8Wo1aPgJ0rW/5x9nI1yQ4d1eBj7YoMaKtBE4y4Og1Lc7f1XeSKqmp25TL8SymblViRFuxoQdrUd5sIcbRa1p8tUeF0e31PWhP/cfi7B0W73SWQCrW37+WT9GJIshTYJgtq6j77/9bg6sJLJrVFMLLSQClhsPVBB1+uaRBWIAAbUKFSElONZTp21n6xc4Ts/R/JLcTdZCJ9U2zJc3y9LLe6yrF+5sUeH+TEn2aiODrIkC+msOTTA5/3tHi62HGnd4kIgadw0T45ZIWHICxHW0/QxQlVkKqoKKmNfywpwS9GolRr5oAPRqK8G88iyNXtchWcJCK9B/ik7pJ0KeJeR8dfZuKoNYC3/+uRlY+hyBPAea/KUV9K2oUDMNg9htSRJ/WIPaKFlv+0MDFnkHX+iJEdZAYdZIyV6CHAN+NlGHtSTW+O6SCWqsfx/oyU/hx0HdMMmcODWcZg2Uj7bD6mBqrjqqh1OhjenFijpe9f01vAc7dZbHmuMbwrLqamwBDW4vxRgtxodaD2XtVRj/v+0uLfX/pE+vRUk6swV4C/DhGhk1/aLD+pAZZeRwc7YBq7vqZoEzp0UiMvZe0EDBAt3DbpzWG42gKleLI5XK4uLggOzubpjR8TmJiIlavXk01VmJSwQQR73SS4M2Wtq9BkJJRmS6eJbmAZkYghBBCeESJlVhFIBDAycmJZq0ipJKgMs0fi5uCT5w4gd9++w1//PEHHj9+DIVCAU9PT9SrVw+dOnXCwIED4eXlVVrxljlqCiaEEFIqTcHR0dGoW7cuOnXqhFWrVkEoFKJZs2bo2rUrgoKCcPXqVUycOBGBgYEYOXKk0dy/hBBCSFVhVveppk2b4sGDBxg+fDg2btyIpk2bmmwuyMjIwC+//IINGzagbt262LhxI9544w3egya2l5ycjC1btmDYsGHw8fGxdTiEkJdEZZo/ZiXWXr16YerUqSVWf93d3TFmzBiMGTMGp06dQkZGBi9BkvJHp9MhJycHOp3lK2wQ24m9oilyqA2gn4y+YEykQs3hl780OHadRVKWDhz0y4yF+grQt6m4xIXOO8/PQ9+mIkzuXniygZM3tZi9V2V0v+hTamw882x1b6FAPwlFs5pCjG4nhvsLq+sMXZFvNO/v8w5MtYdMYv7wm2PXtfj1b/1SZnkq/TCYV3z1w1FeXIWnqPdalEB3Bhve1U/hlJCuw2//avBvvA5PMnUQMPrpJQe8Ki718aEloTLNH7P+JWfPnm3xhdu1a2fxOYSQsjGttwTVTawhGvR0ph9Wx+GTn5V4kKLDmy3FqOOvHzLzOIPDn3dYXE1gS0ys1lo4WAoHKQOFGrj0gMWu8/qZiVZHyQotWl0/QIB3OheehEFq4QgfuYJD/QAh+r8qhouMQXqufhL89zcpsXSoXYnvdfmownMJ3nysnxmpbe1nH7N/PWBx/i6LLvVFqO0vAavjcOIGi9l7VRiVpitxQglSMZiVWN9//32MHTsW9evXL+14CCFloIZX8ZPwX3mow/VHukITFbxaE+jXTAxdKQ5/D/UVwuXpAtxNawghz+cQe0WLqwm6QtMWOtgxhSawt8bzC2gXaB6iX+os5rK2xMRqKoYD/2jBwHje2o719HPgPj9ZfosQEbIVHLaf02BwK7FVE12Q8sWszkvfffcdGjZsiObNm2PVqlWQy+WlHRchxIYKVooxtfILAKvXA7VG6NPJ9U1NVl+a7KWARKRvkrZUvorDyZtaNKguQDX3ZxdwsWdMrkBTx08ApQbIUdJ8PZWBWX8yt2/fxieffILExESMHz8efn5+GDVqFE6ePFna8ZFyyt3dHaNGjYK7u7utQyFW0On0zb0vvgrU9hNAJABWHFbjyDUt0nOte+7GcabvY0mFNylLf3CAh4lkbuL6BbXpf+NZdJ6fh+hTRT9TfhGr46BlOSRl6fBtjBocUOQqK8U5fkMLpQbo2ci8Nul/41m42uufYdsKlWn+mPUXU6tWLcyfPx9z587FoUOHsH79euzYsQObN29GjRo1EBUVhZEjR6JatWqlHS8pJ6RSKYKDg20dBrHSxGhloW0CBoYFun1dBXi/hwQrDqux4Ff9vLEejgya1BCiZ0MRGlQ3r/n117+1+PVv0+tqFoV9mvQVav0zyV//1qBTPSFCfQvf8/w9Ft0WGi+lNqy1GGM6SMA8fU+WVK6jViuQkPFs9Z6Fg+yMFuw2V8xlLRztgHZ1Sj73t381uPxQh/e6Sixe8YdPVKb5Y/VcwZmZmdi8eTPWr1+Pf//9F0KhEN26dUNUVBT69+/Pd5w2QxNEmCaXy3HhwgU0b96cfi8VSEGv4E/7SFDd07jBigEKJZFcJYcL91jceMzi5hMdbifqwHHA253EGNSy+I42nefnoUNdocm5gv+JY/HTcU2xvYILNAgUYMlQu0Idl4auyIeXE4MJXY3j8HBkjJaAs0Rcqg5KDYfkbA4H/tHgvyc6zBloZ7R6jDnXiPpJUWSP6Oedv6fFzF0qtHpFiBmR0hIXKi9NVKaLZ0kusLp/t5ubGyZNmoRJkybhypUrWLFiBdasWYNDhw5Bq7XsGyqpePLy8vDHH38gLCyMCmEFVN2z+M5LBRztGHQKE6FTmP6jIi5Vh2lblVh3QoNejUpeVs3FnjF5n4LmXVOWDLGDgx2Qo+Bw4B8tTt9isfx3NT7oUThJOdiZvr61gr30CbmOP9C2thDvrFVgxWE1fhorK+HMZw5e1n856Nmo+I/Xi/e1mLVbhSY1hPi8r22TKkBlmk8vPSnk33//jdWrV2PXrl3gOK5STWdICDEW7CVAx3pCaHXAo4zSGe8Y4qNP+s1qijCzvxRNawjw2z9a/PeELZX7FUUoYFDLV2jR+9SwHI5c1SLUV1DsGqoX72sxY5cKDasLMau/1KwFvUnFYVViTU9Px7Jly9CoUSO8+uqrWLVqFVq3bo09e/YgISGB7xgJIWUsO5+DhjVdq3yY/uwZZGljGAaTu0shEADrTxZuJi5Nai2Hm49ZVHMz/32evc0iW2E8xOZFl54m1foBAsx+Q0rDayohs5uCOY5DTEwM1q9fj/3790OtViMkJARz587FW2+9Rev3EVKBPEjVgTVREfN3FcDVgcG/8SxWHFajc30RwqoJ4CxjkJXP4dh1LS7eZ9E1XAQv57JZBSXAXYBejUT49W8triawCDdzkfTL8SymblViRFtxiRMvTIpWoPUrQlT3FMBByiApW4f9f2vxJJPDV28YN0GP+EHfWWrTePtC14m5rIVUBEPT+YuuJrCYsUsFdwcGQ1tLcDfZ+B8h6On9ScVmVmL9/PPPsXHjRiQmJsLOzg5vvvkmoqKi0L59+9KOj5RTMpkMjRs3hkxm/rMnUn4UNa3hhz0l6NVIjHrVBOjRUIR/41kcuapFtoKDVKT/4J/UTYI+Tcp2+r2Rr0lw+JoWG06p8fUw8/7mOAA6DmYN7QkLEOD4DRZJ2RooNYCLjEG9agJMGGFXaEpDU19IACBFrsNfD1h0ri8q8tnz3w9YqLRAUjaHqVsL98x+vjNXWaMyzR+zegULBAI0bdoUUVFRGDp0aJV6sE29ggkhhPDeK/jff/9FgwYNeAmOVA4ajQaZmZlwc3ODWGzhxKyEkHKHyjR/zHpIYiqpHjp0CJ999hnefvttPHz4EABw8eJFpKam8hshKZfS0tLwww8/IC0tzdahEEJ4QGWaPxY/KMnPz0ffvn1x9OhRw7ir8ePHo3r16li6dCkCAwOxdOlS3gOtCHJycpCYmFglll1KSUlBamoq7ty5g+zsbFuHU2EJBAJ4eHjAzc3N5BrHhJCKx+LEOn36dFy6dAm7d+9G165djdqau3XrhuXLl/MaYEWg0+mwYMEC7N2719ahlBmWZZGbm4s//vgDQqFtOltUJm5ubnjvvffw+uuvU4IlpIKzOLHu3LkTc+bMQWRkJFjWeMB29erVDc3CVcmCBQvwyy+/YPLkyWjcuHGVeD6hVquRlZUFV1dXSCS0hqS1WJZFeno6Dh8+jLlz5+L69euYPn26rcMihLwEixNramoqwsLCTO4TCARQKBQvHVRFIpfLsXfvXkyePBkjR460dThlRq1WIy0tDZ6enpRYedCuXTvUrFkTq1evxqRJk6gHOrEJan3ih8VtTtWqVcPVq1dN7rty5Qpq1Kjx0kFVJElJSQCAxo0b2ziSsiWRSODv709JlUfNmzeHRqMx/E0RUpb8/PzwxRdf0GQ/PLA4sfbv3x/z5s3DP//8Y9jGMAzi4+PxzTffYODAgbwGWN4VdFSqCs2/pHQV1BaqQuc3QiozixPrzJkz4e/vj+bNm6NZs2ZgGAajR49G/fr14e3tjU8//bQ04iTljEajQWpqKjSasp2/lRBSOlJTU7Fq1SoaMskDixOrk5MTzp49izlz5sDR0REhISGwt7fHZ599hlOnTtF0WFUEx3HQaDSwcjlfQkg5o9VqkZSURMt+8sCqfv0ymQyffvopTp8+jdu3b+Ps2bP4/PPPYW9feFJqUnFt2LABDMOYfEmlUpw9e9ZwbF5eHhYtWoSGDRvC2dkZTk5OCAkJwZtvvomTJ0/a8F0QQkjZKtuZtEmFtH79etSpU8dom0ajgbe3NwD9kJFu3brh6tWrmDZtGpo3bw4AuHPnDvbv34/Tp0/Tgg2EkCrDrMTas2dPzJs3z+yeryqVCitWrIBUKsV77733UgFWRcnZOmQrCjexusgY+LiU/eQB9evXR7NmzYy2FQy3AYBTp07h7NmzWLduHUaPHm04pnv37pg4cWKF64zDsiy0Wi2kUmnJBxNCyAvM+pT29fXFq6++ijZt2mDVqlW4detWoWNycnJw5MgRTJo0CdWqVcOKFSuq3BAUPiRn6/DWjwqMX6cs9HrrRwWSs8tHkhKJRHBzc4NIJEJ6ejoAFNlN35yZhNRqNebOnYs6depAKpXCy8sLo0ePLtSRIjg4GL1790ZsbCyaNGkCmUyGOnXqYN26dYWumZSUhHfeeQcBAQGQSCSoUaMGvvrqK6NnSHFxcWAYBosXL8bcuXNRo0YNSKVSHD9+HACwb98+NGjQAFKpFDVr1sSyZcswa9Ysw3SeANC5c2fUqVOn0PNmjuNQq1Yt9OrVq8T3T4itubq64o033oCrq6utQ6nwzKqxrlu3DpMmTcLChQsxefJkaLVayGQyeHl5wc7ODhkZGUhPTwfHcQgKCsLnn3+O9957j77xWyFbwUHNmt6nZvX7fVzKNqaCGtzzGIYxdFRr1qwZxGIxpkyZghkzZqBTp04WjYXT6XTo27cvTp8+jY8//hitW7dGfHw8Zs6ciQ4dOuDSpUtGneIuX76Mjz76CJ9++il8fHywZs0aREVFoVatWmjXrh0AfVJt3rw5BAIBZsyYgZCQEPz555+YO3cu4uLisH79eqMYvvvuO4SGhmLp0qVwdnbGK6+8gtjYWPTv3x/t2rXD9u3bodVqsXTpUiQnJxudO2XKFMP82V26dDFsj4mJwb179/Ddd9+Z/bsgxFZkMlmRk/8QC3EWSk5O5jZu3MhNmDCB69evH9e9e3du2LBh3Jw5c7jTp09zOp3O0kuWa9nZ2RwALjs72+T+mzdvck2bNuVu3rzJy/1uJWq5TvNyi3zdStTych9zrF+/noN+vehCL6FQyOXk5HBarT6etWvXco6Ojob9fn5+3MiRI7lTp06VeJ9t27ZxALjdu3cbbb948SIHgFu5cqVhW1BQEGdnZ8fFx8cbtikUCs7d3Z175513DNveeecdztHR0eg4juO4pUuXcgC469evcxzHcQ8ePOAAcCEhIZxarTY69tVXX+UCAwM5lUpl2JaTk8N5eHhwzxcdlmW5mjVrcn379jU6v0ePHlxISIjZZYLvvyVCLJGTk8OdPXuWy8nJsXUo5VJJueB5Fnde8vb2xogRIzBixAheEjsp/zZu3Ii6desabdNqtZDL5ZBIJBAKhRgzZgwGDBiAgwcP4ty5czh37hw2b96MTZs2YdGiRZg2bVqR1z9w4ABcXV3Rp08fo5pxo0aN4OvrixMnTmD8+PFG26tXr2742c7ODqGhoYiPjze6ZseOHeHv7290zR49emDq1Kk4efIk6tWrZ9j++uuvG03ykZeXh0uXLmHixIlGs0s5OjqiT58+2LBhg2GbQCDAxIkTMW3aNDx8+BDVq1fHvXv3EBsbi6VLlxo1GxNSXuXk5OD3339HcHAwHB0dbR1OhUbLaJAS1a1bF82aNTN6NWnSpNBxLi4uGDJkCJYtW4bz58/jypUr8PHxwfTp05GVlVXk9ZOTk5GVlQWJRAKxWGz0SkpKKrQ+pIeHR6FrSKVSo3mqk5OTsX///kLXK2jqevGaLzZdZ2ZmguM4+Pj4FLqXqW1jxoyBTCbDjz/+CABYsWIFZDIZxowZU+T7JoRUTjTchpSasLAwDB48GN9++y1u375tGIbzIk9PT3h4eCA2NtbkficnJ4vv7enpiQYNGmDevHkm9/v7+xv9/GKt0s3NDQzDFHqeCsDkXL4uLi4YNWoU1qxZg6lTp2L9+vUYOnQodQQhpAqixFrOuMgYSIQw2YFJItTvL2/S09Ph5ORkckL+//77D0DhRPa83r174+effwbLsmjRogUvMfXu3RsHDx5ESEgI3NzcLD7fwcEBzZo1wy+//IKlS5ca3ltubi4OHDhg8pzJkydj5cqVeOONN5CVlYWJEye+1HsghFRMlFjLGR8XATa8KytX41ivXbtWqFewVquFl5cXvL29cfz4cUyZMgXDhg1D69at4eHhgZSUFGzbtg2xsbEYOXIkAgICirz+4MGDsWXLFvTs2RNTpkxB8+bNIRaL8ejRIxw/fhx9+/ZFZGSkRTHPnj0bhw8fRuvWrTF58mTUrl0bSqUScXFxOHjwIH788cdiYyq4Rq9evdC9e3dMmTIFLMtiyZIlcHR0REZGRqHjQ0NDERERgZiYGLRt2xYNGza0KGZCbEkqlSI0NJRGc/CAEms55OMiKPMhNcV5ftKH5/3000+oXbs2WrZsiTFjxuD48ePYtGkT0tLSIJPJUK9ePSxfvtyo45EpQqEQv/76K5YtW4ZNmzZhwYIFEIlECAgIQPv27REeHm5xzH5+frh06RLmzJmDJUuW4NGjR3ByckKNGjUQERFhVi02IiICu3fvxowZMzBo0CD4+vpiwoQJePLkCTZt2mTynEGDBiEmJoZqq6TCcXd3x5AhQ2wdRqXAcJxls6ir1eoqtQanXC6Hi4sLsrOzTS4+/d9//2H48OHYvHlzoWn/KjOO46DT6SAQCKpUr1eNRoNGjRqhWrVq+P333wvtHzBgAM6dO4e4uDiLlxKsqn9LpHxgWRZKpRJ2dna04LkJJeWC51m10Plnn32Ghw8fWh0gqfg0Gg2Sk5Mr/bJxUVFR+Pnnn3Hy5Els374d3bp1w82bN/Hxxx8bjlGpVPjzzz+xbNky7N27F9OmTaP1eUmFk5KSgqVLlyIlJcXWoVR4FjcF9+nTB9999x2WLl2K3r17Y+LEiejcuXNpxEaIzeXk5GDq1KlITU2FWCxGkyZNcPDgQaMZlhITE9G6dWs4OzvjnXfewaRJk2wYMSHE1ixOrOvWrcPXX3+Nn376CT/++CO6deuG0NBQvPfeexg1apRVQyMIKa927NhR4jHBwcG0Li0hxMCqLqZubm74+OOPce/ePezduxeBgYGYMmUKqlWrhokTJxqGWBBCCCFVzUuN3WAYBq+//joWLVqE9u3bIzc3FytXrkRYWBgGDBhAbfWEEEKqHKsTq1arxbZt29C2bVs0a9YM9+/fx6JFixAXF4dvv/0Wp0+fxsiRI0u8Tk5ODj7++GN069YNXl5eYBgGs2bNMjuOlJQUvPXWW/D09IS9vT1atWqFo0ePmjz2yJEjaNWqFezt7eHp6Ym33nqLkr+VxGIxfH19qZMOIZWEj4+PYcUo8nIsTqyPHz/GjBkzEBgYiGHDhkEoFGLHjh24f/8+pk2bhurVq2PSpEn48ccfcerUqRKvl56ejtWrV0OlUqFfv34WxaJSqdC5c2ccPXoUy5Ytw759++Dj44OIiAicPHnS6NiTJ0+iR48e8PHxwb59+7Bs2TIcOXIEnTt3hkqlsui+RN9aUdWG2hBSmQkEAkilUrPWTybFs7jzUnBwMEQiEQYPHowpU6agUaNGJo+rWbOmWd98goKCkJmZCYZhkJaWhjVr1pgdy9q1a3Ht2jWcPXsWrVq1AgB07NgRDRs2xMcff4zz588bjp02bRpCQ0Oxa9cuiET6t12jRg20adMG69atK3ESA2JMq9UiOzsbLi4uht8nIaTiSk9PR0xMDHr06GFyoQtiPou/msycORMPHz7E+vXri0yqgH5prwcPHpR4PYZhrK717N27F7Vr1zYkVQAQiUQYPnw4Lly4gMePHwPQ17IvXryIESNGGCWB1q1bIzQ0FHv37rXq/lWZTqeDSqWCTqezdSiEEB6o1Wrcu3cParXa1qFUeBYn1i+++AJeXl6lEYvFrl27hgYNGhTaXrDt+vXrhuOe3/7isQX7CSGEkJdlcRtecc9NBQIBXF1dUadOnTJpHkxPT4e7u3uh7QXb0tPTjf5b1LEF+4sjl8uNfpZKpVVmsuorV65g2bJlOHHiBJ48eQJAPwNXy5Yt8d577xm1GADAoUOH8PXXX+PatWtIT0+Hh4eHYYL6Tz/91BZvgRBCyozF2a9Dhw4lNt06Ojriww8/xMyZM60OzFzFxfLivqKONacpOjAw0OjnmTNnWtR7uaJatWoVJk6ciNq1a2PKlCkICwsDwzC4evUqtmzZgtatW+Pu3bsICQkBAPz4448YP348BgwYgO+//x7u7u5ISEjA2bNnsWvXLkqshJBKz+LEun//fkyaNAm1a9fGkCFD4OPjg6SkJGzbtg23bt3C7Nmzcfr0acyZMwfu7u6lOr2bh4eHydpmwZJeBTXUggfxRR1rqib7ooSEBKOJl0u7tqp+9BDyQwegTUqEyNcPzt17QxJQvVTv+aI//vgDEyZMQK9evbBr1y6jxRfat2+PsWPH4sCBA5DJZIbtCxYsQLt27bBr1y6ja40YMaJCPo/Nz8+Hvb29rcMgpNQ5OzujR48eJU4wT0pm8TPW2NhYtGvXDjExMRg5ciS6d++OUaNGGbafOXMGq1evxpgxY/DTTz+VRswG4eHhuHr1aqHtBdvq169v9N+iji3YXxxnZ2ejV2kmVnnsATwcMxhZO7Yg99RRZO3YgodjBkN+yPQC26Vl/vz5EAqFWLVqVaEVjYRCIRwcHDBo0CCjRczT09Ph5+dn8nrmduMvGAbl7OwMe3t7tGnTptDY5FmzZoFhGFy/fh1DhgyBi4sLfHx8MGbMGGRnZxsdy3EcVq5ciUaNGkEmk8HNzQ1vvPEG7t+/b3Rchw4dUL9+fZw6dQqtW7eGvb09xowZAwB49OgR3njjDTg5OcHV1RXDhg3DxYsXwTAMNmzYAADYtGkTGIbBn3/+Weg9zZ49G2Kx2NCUTkh54+DggObNm8PBwcHWoVR4FifW7du3F7lm39ChQ7Fnzx4AQO/evXHnzp2Xi64EkZGR+O+//4yG1Wi1WmzevBktWrQwfOBXq1YNzZs3x+bNm8GyrOHYc+fO4datW+jfv3+pxmkJ9aOHSPnffIDTAToW0D39L6dDytfzoX6cUCZxsCyL48ePo1mzZiYTpU6nQ35+fqFaaKtWrbB7927MmjULly9fNvp9m2Pz5s3o1q0bnJ2dER0djR07dsDd3R3du3c3OfHHgAEDEBoait27d+PTTz/F1q1b8cEHHxgd88477+D9999Hly5d8Msvv2DlypW4fv06WrdujeTkZKNjExMTMXz4cAwdOhQHDx7EhAkTkJeXh44dO+L48eNYtGgRduzYAR8fHwwaNMjo3II1W1esWGG0XavVYtWqVYiMjDT6EkJIeaJQKHDlyhUoFApbh1LxcRayt7fnNm3aZHJfdHQ0Z29vz3Ecxx07doxzdHQ065oHDx7kdu7cya1bt44DwA0cOJDbuXMnt3PnTi4vL4/jOI4bM2YMJxQKubi4OMN5SqWSCwsL4wIDA7ktW7Zwhw8f5iIjIzmRSMSdOHHC6B7Hjx/nRCIRFxkZyR0+fJjbsmULFxgYyNWvX59TKpVFxpadnc0B4LKzs03uv3nzJte0aVPu5s2bZr3XkqSuWcHd6daau9OlReFXt1Zc6poVvNynJElJSRwAbvDgwYX2abVaLi8vj4uPj+fy8vI4nU5n2Hf37l2ufv36HAAOACeTybjOnTtz33//PadWq4u9Z15eHufu7s716dPHaDvLslzDhg255s2bG7bNnDmTA8AtXrzY6NgJEyZwdnZ2hpj+/PNPDgD39ddfGx2XkJDAyWQy7uOPPzZsa9++PQeAO3r0qNGxK1as4ABwMTExRtvfeecdDgC3fv16o7gkEgmXnJxs2LZ9+3YOAHfy5Mli3z/ff0uEWOLJkyfcrFmzuCdPntg6lHKppFzwPItrrG3atMGXX36JW7duGW3/77//MGPGDLRt2xYAcP/+fQQEBJh1zfHjx2PgwIGGZredO3di4MCBGDhwoGHKQZZlwbKs0SoiUqkUR48eRceOHTFp0iT06dMHiYmJiImJQfv27Y3u0aFDBxw8eBCJiYno06cPJk2ahI4dO+Lo0aPlqnevNikR+pxU3H7batq0KRwcHBAUFAQHBwd8/fXXhn0hISG4fPkyTp48ia+++gpdunTBxYsXMXHiRLRq1QpKpbLI6549exYZGRkYNWoUtFqt4aXT6RAREYGLFy8iLy/P6JzXX3/d6OcGDRpAqVQa/m4OHDgAhmEwfPhwo2v6+vqiYcOGOHHihNH5bm5u6NSpk9G2kydPwsnJCREREUbbTbXcFEw08vxjkO+//x7h4eFo165dke+dEFJ5WNx56ZtvvkH79u0RFhaG+vXrw8fHB8nJybh27Rrc3Nzw7bffAgCePHmCUaNGmXXNuLi4Eo/ZsGGD4VnW83x8fBAdHW3Wfbp27YquXbuadaytiHz9ABTdS1m/v/R5enpCJpMhPj6+0L6tW7ciOzsbt27dwujRowvtFwgEaNeunSGR5OXlISoqCtu3b8e6deswYcIEk/csaJZ94403iowrIyPD6BnQizPEFHxJKmjOSk5OBsdxRc4CVrNmTaOfTTV7p6enmzy/qG2DBg3CqlWr8Omnn+L69es4ffo0Vq1aVeR7IoRULhYn1rCwMFy7dg3/+9//cOrUKdy/fx8eHh746KOP8P777xs+mL788kveg60KnLv3Rtb2zUXvj+hTJnEIhUJ06tQJv//+OxITE40STr169aBWq83ujOTg4IDPPvsM27dvL3YyDk9PTwDA8uXL0bJlS5PHWDpBuKenJxiGwenTp022TLy4zdTQKw8PD1y4cKHQ9qSkJJP3nDJlCjZt2oR9+/YhNjbW0NmJEFI1WJRYlUolZs+ejQEDBmDx4sWlFVOVJgmoDu+PPkfK1/MBhsHzzcLeH34OSbXAok/m2WeffYaYmBi8++672LVrl9FKNgzDmJwE5MUkXODmzZsAUGznnTZt2sDV1RU3btzAxIkTeXgH+k50CxcuxOPHj/Hmm29adY327dtjx44dhnlUC/z8888mj2/atClat26NRYsW4dq1axg3bhz1tCTlnlgsRkBAAK1YxQOLEqudnR2++eabQs+aCL+cu/eGXf2GkMfufzaONaJPmSZVQJ/oVqxYgUmTJqFJkyYYN24cwsLCIBAIkJiYiN27d+vjfW7cW1hYGDp37owePXogJCQESqUS58+fx9dffw0fHx9ERUUVeT9HR0csX74co0aNQkZGBt544w14e3sjNTUVly9fRmpqKn744QeL38O4ceMwevRoXLp0Ce3atYODgwMSExNx5swZhIeHl7gAw6hRo/DNN99g+PDhmDt3LmrVqoWYmBgcOnQIgOlhRFOmTMGgQYPAMEyRTd+ElCeenp7Flk9iPoubguvWrYsHDx5QR4xSJqkWCM8o238gv/vuu2jVqhWWLVuGb775Bk+ePAHDMAgICEDr1q1x9OhRo84+CxcuxKFDhzBv3jwkJSVBq9UiMDAQQ4cOxfTp04sc41pg+PDhqF69OhYvXox33nkHOTk58Pb2RqNGjfDWW29Z9R5WrVqFli1bYtWqVVi5ciV0Oh38/f3Rpk0bNG/evMTzHRwccOzYMbz//vv4+OOPwTAMunXrhpUrV6Jnz55wdXUtdE6/fv0glUrRsWNHvPLKK1bFTQipoCztcrxnzx6uVq1a3N27d63osFzxlPVwm4pCpVJxjx8/5lQqla1DsZl58+ZxDMNwCQkJhfb9+uuvHADut99+M/t6VfVviZQPNNymeJYMt7G4xrp+/Xrk5+ejbt26aNCgAfz8/Iw6fDAMg3379vGX+QkpB77//nsAQJ06daDRaHDs2DF89913GD58uNGwshs3biA+Ph4fffQRGjVqZPRMlhBSNVicWK9cuQKJRIJq1aohPT290Py71q6tSkh5Zm9vj2+++QZxcXFQqVSoXr06PvnkE3zxxRdGx02YMAF//PEHmjRpgujoaCoPhFRBFidWc8acElLZjBkzxjCBSXFenHCCEFL1WDzzEiGEEEKKZlViValUWLVqFYYMGYKuXbsaJtvft29foRVDSOUkFovh7e1NY94IqSS8vLwwadIkeHl52TqUCs/ipuC0tDR07NgR169fh6+vL5KTk5GTkwMA+OWXX3Do0CGsXLmS90BJ+VLUBBGEkIpJJBKZtTY1KZnFNdaPP/4YWVlZuHTpEh4+fGg0KX7Hjh1x8uRJXgMk5ZNWq0VmZia0Wq2tQyGE8CAzMxN79uxBZmamrUOp8CxOrAcOHMDs2bPRpEmTQj0eAwIC8OjRI96CI+WXTqeDQqEotB4rIaRiUiqVuHr1arErUBHzWJxY5XI5goKCTO7TaDRUgyGEEFKlWZxYa9SogT///NPkvgsXLqB27dovHRQhhBBSUVmcWIcNG4ZFixZh3759huerDMPg4sWLWLZsGUaMGMF7kIQQQkhFYXFi/eSTT9CmTRtERkYa1sbs3r07WrZsiRYtWmDKlCm8B0lsY8OGDWAYxuRLKpXi33//hVAoBKBfzHzRokVo2LAhnJ2d4eTkhJCQELz55ptmdWiLi4tDr1694O7uDoZh8P777yMuLg4MwxgtcH/27FnMmjULWVlZpfSuCamaHB0d0b59ezg6Oto6lArP4vESYrEYBw8exPbt2/Hbb78hOTkZnp6e6N27NwYPHmz24tek4li/fj3q1KlTaHu9evUgFArBsiy6deuGq1evYtq0aYYVY+7cuYP9+/fj9OnTaN++fbH3+OCDD3D+/HmsW7cOvr6+8PPzg6+vL/7880+EhIQYjjt79iy++uorvPXWWyZXlSGEWMfJyQkdOnSwdRiVglUDERmGweDBgzF48GC+4yHlUP369dGsWTOjbTqdDmq1GjqdDqdOncLZs2exbt06jB492nBM9+7dMXHiRLN6Dl+7dg3NmzdHv379jLa3bNmSl/dACCmeSqVCQkICAgMDIZVKbR1OhUbVS2IVrVaLjIwMaLVaw0IMRa21WlwrxokTJ8AwDO7evYuYmBhDU3NcXFyhpuBZs2Zh2rRpAPSd6AqOpfl5CXl5GRkZ2LJlCzIyMmwdSoVncY1Vo9Fg0aJF2Lp1K+Lj4wuNeWIYhobcPCc9V4f0XM5om5MdAz9XAdRaDnFphWtzob7655YJ6TooNMbn+roI4CxjkJXHISXH+Fx7CYMAdwFYHYd7Kc/2eTgy8HC0/jsUy7KF/k1ZljX8f7NmzSAWizFlyhTMmDEDnTp1KnFB8wJNmjTBn3/+icjISISEhGDp0qUA9Ek6MTHR6NixY8ciIyMDy5cvx549ewz3qFevntXvjRBC+GZxYv3ss8/wzTffoEePHujXrx81GZTgwN9abDyjMdrWOUyIz/vaIVXOYfy6woOxj37uAABYdECFm4+Nk+enr0vRtb4IJ25qsfx3tdG+ZjWEWDTEDkoNjK47sq0Yo9pJrH4PpppjhUIhHj58CAAIDg7Gjz/+iClTpmD48OEA9Imxa9euGDt2LF577bUir+3s7IyWLVtCKpXC1dW12KbfgIAAVK9eHQDQuHFjBAcHW/2eCCGktFicWHfs2IEZM2Zg5syZpRFPpdO7iQitQoVG25zs9DNWeTkz+GGMXZHnftJbarLGCgAd6opQL8C4Fmov0V/XTgyj63o4vtyaoBs3bkTdunWNtr1Ygx0zZgwGDBiAgwcP4ty5czh37hw2b96MTZs2YdGiRYYmXEIIqewsTqyZmZlo165dacRSKXk4CuBRRO91iYgxNPuaEuhRdPOtqwMDVwfT5woFxV/XUnXr1i3UeUmj0SAjI8NoWksXFxcMGTIEQ4YMAQBcv34dXbp0wfTp0/H2229TL15CyjGhUAg3NzfDEDpiPYsfvLVr1w7//vtvKYRCKhKxWAwfH59il40LCwvD4MGDodFocPv27TKMjhBiKW9vb0yePBne3t62DqXCszixfvfdd1i7di327NkDtVpd8gmk0ktPTy/yb+G///4DAPj7+/Nyr4Jn+gqFgpfrEUII3yxuCm7UqBE0Gg0GDhwIhmFgb29vtJ9hGGRnZ/MWILG9a9euFXqmqtVq4erqitq1a+P48eOYMmUKhg0bhtatW8PDwwMpKSnYtm0bYmNjMXLkSAQEBPASS3h4OABg2bJlGDVqFMRiMWrXrg0nJyderk9IVZWcnIyNGzdi5MiRhln1iHUsTqwDBgwotFwcqdyen/TheUuWLEFoaChatmyJMWPG4Pjx49i0aRPS0tIgk8lQr149LF++HOPHj+ctlg4dOuCzzz5DdHQ0fvrpJ+h0Ohw/fpxmjCHkJel0OuTn59NSkDywOLE+P28rqdzeeustvPXWWyb3qdVqpKWlAdAPg5kzZ85L3SsuLq7QtuDgYMNCD8+bP38+5s+f/1L3I4SQ0kIzLxFCCCE8MiuxjhkzBg8ePDDatnXr1kIrjNy8eZOG4hBCCKnSzEqsGzZsQGpqquFnlmUxYsQI3L9/3+g4uVyOP/74g98ISbkkEong6ekJkciqdRwIIeWMh4cHxowZAw8PD1uHUuFZ/alo6tkXqToEAgEkEuunSSSElC8SiQSBgYG2DqNSoGesxCosyyI7O9toMn5CSMUll8tx6NAhyOVyW4dS4VFiJVZhWRZ5eXmUWAmpJPLy8nDu3Dnk5eXZOpQKjxIrIYQQwiOzn7F+/fXXhtk4OI4DwzBYsmQJvLy8DMckJyfzHyEhhHeq+3eQtXcHFJf/BpuuH48s8vSCrHEzOPfoC7vaxqsZ5V08h6xdW6GOuw82JxtCJxeIAwLh8GoruA0eyUtMmqQniB/RHx7jJsFt4DBerllRFLx3U3w+nwOnjl2NtuUcjUXmzq3QPIwDI5PBvmkLeIx9D2Jv82ZMUt75D+k/fQ/lzetghELIGjWFLnJwoeO06WlIX7sS+Rf/hC4vD+KAQLhGDoJzj9ctf5OlgM3KxIMhfeDYtgN8p881eYwuLw8PBvWErPGr8J+ztEziMjux7ty5s9C27du3F9pGszIRUr5lH9iL1O+XQhIYBNfINyEJqgkwDNQP45B7/Hc8mjgaQdG7IPbXT0OZvX8PUr9bDIfXOsJr4kcQODtDm5IC5Y0ryD11jLfESgCXfgPh1LG70TZxgHGHoqxfdiBtxf/g3ON1eERNAJuWgvQNq/H4w3cQ+MNGCJ2ci72H+mEcHk+dAGlIKHy/mAdOrULGxp+gmTcd0tBGhuPYvFw8+uAdQKuBx9j3IHT3RO7x35Hyv/lg83Lh9sZQ3t63tYSubnBo9Rry/jgFNkdu8r3nnDgMTqUq0y8DZiVWmuKKvEggEMDe3h4CAT1NqEgU1y4jdfkS2DdvDb8ZC8A8tzqRfeNmcO37BnJPHgUjkRq2Z/68EXbhjeE3Y4HRtZy79gBHnw28Enn7wq5e/SL3c2o1Mjashn3LtvD+8HPDdnFQDTye8jaydm6Bx5jipxDNiP4JjFgC/zlfQ+DgAACQhtZB/FsD0VGrMMz/Lt+/B9rExwhYsQF2oXUAAA6vtoQ2Ix0Z0T/BOaIPhI62n6PbOaIP8k4fR87RQ3DtN7DQfnnsfgjd3OHQonWZxUSfiqREV65cQVRUFEJCQiCTySCTyVC3bl188sknJpcQPHToELp16wZ/f39IpVL4+/ujQ4cOWLhwoVn3++KLL1C9enWIRCLDGq4dOnQwmg84Pz8fs2bNwokTJ17+DVYhmduiAYEA3u9/apRUn+fYvjNEns8e8bDybIiKGNvImPHF6tFH4/Hw7aFQXP0XCZOicK9XezwY3AfpG1aBK6LzW+aurYgbEYl7fToiYfJYKG9cK3RM3tlTSJg8Fvd6t8e91zvh8SeToLhx1eiY9I0/4W7XllDF3UfSvC9xv29nPBjYA8lL54LNyzU6VqdWIW3tSsSNiMTdHm3xYHAfpH63BGxujtFxccP74ckXHyHv4p9IGD8S93q1R/yYQZDH7i/xd/GyVHH3ocvLhUNz4yQhqxcOgZMzcs+cKPZ8jtUi7/wZOLbtaEiqACD28YOsYVP4Jj2Ci4sLAEBx/TKEbu6GpFrAoWUbcEoF8i+eK/Ze8kMHcLdrS+T/cwkp/5uP+/274V7fTkhe9BV0CgW0GelImjMd9/t1wYNBvZC26jtwLyz2wWk0yNiyDvFjBuFuz9dw/40IJC+ZAzYr03CMfbOWEHl5I+f3A4ViUMc/gOq/63Dq2gOMsOzG3NPoflKsVatWYeLEiahduzamTJmCsLAwMAyDGzduYNu2bXj11Vdx9+5dhISEAAB+/PFHjB8/HgMGDMD3338Pd3d3JCQk4OzZs9i1axc+/fTTYu+3b98+zJs3D9OnT0ePHj0My8StXLnS6Lj8/Hx89dVXAEAT8JuJY1koLv8Fu9C6EHl4mn2eXb36yD19HOkbf4Jjmw6QBNcEY+Fi2NqMdCTN+xJug0dAMmoc8s7/gcwt66HLyYHXpKlGx2b/uguSwCB4jv8AAJCxYRWefPEhgjbtgdDBEQCQc+wQkhfMhKxpC/h8PgecRo2s7ZvxeOoEVFu8HLL6jYyumTT7Mzi27wLfHn2gfnAP6Wt/AAD4TP1C/7vhOCTN/AT5/1yE2+BRkIU3hOr+XWRsXAPlzasIWLYGzHPjttX37yB91XdwHTQSIjd3yGN+RcrX8yD2D4CsQWPDcXHD+wEAgjf/YtbvKfPnjUhf9wMYoRDSWrXh9uZwOLR+Npsdp9UAABhx4THkjFgCzeME6NQqCJ5rcXie5sljcCoVpDVDCu0TB9eA4u8LUOflQuLgCE6jLfI++t/BXeCFZ7+mpPxv/tNnoHOgunsb6et+BMey0DyKh0ObDnDu1Rf5f19E1vZNEHp4GpqYOZ0OiTOnQXH1MtzeHA67sHBok5OQvvEnPJ46AQEr1kMgtQMjEMCpWy9kblkP1b07kIa8Yri3/Gmyde7ep8Q4+USJlRTpjz/+wIQJE9CrVy/s2rXLaEKItm3bon///jh58iRkMplh+4IFC9CuXTvs2rXL6FojRoww65HCtWv6msmLCy7Xq1fvZd9OlcfKs8CpVBB5+xbap685Pjfpi0Bo6C/hPeUTJM78BJmb1iJz01owUins6oXDoU0HuPTqB8aM2bd08mz4fbXYkCTsm7UAp1Yh+8AeuA4aDvFzMQlk9vCb87UheYs8PPFo4hjkX/gTTh27gtPpkLb6e0hqhMB//jeGWrND89aIHzkA6T+tQMCyn4zu7xzRB25vDtffu0lzaB4/gvzQAXh/NB0MwyD/0nnkXzoHj7cnPjuuaQuIvH2QPPcLyI8chEvPfs9+l9nZqPbtakPcdg0aIf+fi8g59rtRYjW3lsSIJXDu2Rf2TZpD6OEBbUoysn7ZicSZH8Prg8/g0rMvAEASUB0QCKC8fhnOEb0N52uePAKboe+EpsvJgcDDdGJl5folPQVOLoX2KQQigOOQ+jAe1eqGQRJUA4p/LkKTkmT076O8dll/rRzzlgd1aNkGnu9MBqD/nSpvXkPu8d/h+e4UuA4Yot/epDnyL51H7rFDhsSae/Io8i+eg++MBXB8raPhepKar+DRxNHI+f03uPQZAECfODO3boA8dj+83vsQgL52nnMkFnZhDSCpHmxWrHyhpmBSpPnz50MoFGLVqlVFzrI0YMAAo0XM09PT4efnZ/LYkp7HBgcH44sv9DUIHx8fMAyDWbNmATBuCo6LizP0Rv/qq6/AMAwYhilyJR5SsoQJb+FeRFvDK2vXVsM+sX8AAldtQrWvf4D7yLcha/wqVLduIu37pXg0eSx0alWJ12fs7Y1qXgDg2KkboNNBeeUfo+32LdoY1YilNWoBALTJiQAATUI82PRUOHXpYdQULZDZw+G1jlD+dx06pdLomg6tXjP6WVKzFji1CmxWBgBA8e8lAIBzt17GMbbrDMZOBsU/l4zPD3nF+MuARApxQHVoUxKNjguK3oWgaOMvmaaIPDzh/cFncGzfGbL6jeDUqTsC/vcjpLVCkb52JThW30QqdHaBU6fukB+JQfaBvWDl2VDdv4OkBTMBwdPfmcCMDqTFHqLf6dKzLxihCMkLZkIVdx+sPBtZ+3Yh5+SRp4eZ11HVoUVbo58lgcEA9P/ORturB0OTnGT4Oe/8GQgcneDQ6jVwrNbwktZ6BUJ3Dygu/204VuznD1nDpsg5dgicRl+rz7/wJ9iMdDhHlG1tFaAaKykCy7I4fvw4mjVrVmSiNKVVq1bYvXs3Zs2ahcjISNSvXx9CM5sN9+7dixUrVmDt2rWIjY2Fi4uLyQXS/fz8EBsbi4iICERFRWHs2LEAYDT0ixQmdHYFI5VCm5JUaJ/v57OhUyrBZqQhcca0QvsZgQCyBo0NtTGdQoGU/81D7okjyIndD5fX3yj23iJX98Lb3PTPbdkXZvoROhvXpgqaYAsSeEFNSeRe+LmvyMMT0Omgy5VDYGdX9DWfPl/mVPpr6uTZgFAIoaub8XEMA5G7h6GmV9T1Cq6pU5X8JcNcjEgEx/ZdkL52JTSPEiAJqgEA8Jr8sb5muXwJUpctAgQCOHWOgMjNHfmXzpuM7cW4dXITtc3cHHAAGHv9s1dJUA34zlqI1G8XIeFtfS1S5OUDz3GTkbbia6Pn8MURvNhTV6xPOy/24GVEInBqteFnNjMDutwc3OthnJgN+7ON34Nzjz5IXjATeX+ehmO7TpAfOgBGZg/H9p3NipNPlFhLmTY9DdqnTTQFhI7OEPv5Q6dWQR3/oNA5dq/oOwuoE+KhUyqM9ol9/CB0dgGblQlNqvG4YYHMHpKA6uBYFqr7dwzbRe6eFj1TA4C0tDQoFAoEBQUV2seyLLRareElFosNzYY//vgj+vXrh6+++gpfffUVZDIZWrdujcjISIwbNw7iIjrMAEDjxo0NibRp06bw9DQds1QqRdOmTQHo14Jt2bKlRe+tqtKPV2yG/L/OQ5ueZvQ3UfChrUl6Yta1BDIZ3AaPQu6JI1DF3S/xeO3TmqHRtsx0AIDQufjhIS8SPm3G1GakF75mehogEEDgaNk1Bc4uAMuCzco0Sq4cx0GbkQ5paN1izi4DRjVzGXw+nQXP9z6ENjUZIg8vCF1cET9mEOzCwottfhb7VwMjlUL14F6hfbpHD5FjZw/H51qnHJq3hv2WX6B5nACwLMQB1ZF78igAQBbeuNA1+CR0doXA2QX+8781uV/wtPeyIda2HSBwcoY8dj9kDRoj7/wfcO7SAwKZvcnzSxMl1lKW/dteZG5aa7TNsXN3+H76FbSpKXg04a1C59Q6rO9tl7xkDlQ3jXtD+nwyE05deiDn5FGkfW882FnWtAWqLVwGTqk0uq7biCh4jHybnzcEfdK7fPmy4eclS5Zg6lR9B5SQkBBcvnwZZ86cwYkTJ3Dp0iWcPHkSR48exfr163HmzBnYPVeTIGXLbfBI5F/8E6nLFsF3xgKzno++mIQLqB/GAYBZX9q4/HzknT1l1Byce+x3QCCAXQPLPqDFgUEQenoh59jvcB04zPClTqdQIO/0cdjVrW9UWzWHfeNXkbVjM3KOxhqe+wFA3unj4JQKyBo3s+h6fOC0WuScOAKBi6thTPHzhE7Ohlpf3tlT0CTEw2Pse8VekxGK4NCyLfLOnIDu7YkQPK2dalKSwN68iif+wfB/oYmXYRj9s13oe+lm7d0OSUio0bPk0uDQsg1yTxwGdCzs6hY9BKmAQCKFU8duyD6wF5nbNwFaLZxs0AwMmJlYZ8+ebfYFGYbBl19+aXVAlY1Lr8hCz3eET79Ni7y8EbByQ5Hn+kz70mSNFQCc2ncuNN6t4JsZY2dndF2Ru2W1VQDw9PSETCZDfHx8oX1bt25Ffn4+EhMT8frrhQddCwQCtGvXzrA2b15eHqKiorB9+3asW7cOEyZMsDgewg9Z/YbwmjgVqSu+RsL4UXDu1Vc/QYSAAZuejtwzxwHA8IELAA/fHgpZo2ZwaN4KYr9q0KnVUP13HVm7tkLo5g7niJIH3gucXZDy3RK4pSRDElAdeRfOQn5wH5z79Dd6VmkORiCA59sTkbxgJhK/+AguvfqB02iQuXML2Lxc+I61/O9L1rQ57Ju1RNqaFdDl58EurIGhV7C0Viicu/Sw+JoAED9K30Re0nPW1B+/BbRa2IU1hNDdHdqUFGTv2wn1vdvwnvqF0TPn3NPHoE1Pg6R6MDi1GorLfyNr73Y4946E4wvPsU3d333k20iYOAZPvpgKt8Ej9GNjo3+C0MUNPb5eblRjT/1+KWQNm0Dg7AJt4hNk7d0BbVoKqn39g1W/D0s4duiKnKOH8GT6h3CNHARpnXpghCJo01Kg+PcvOLRuB8e2HYzOce7RB9m/7kLW7m0QBwZBFtag1OM0xazEWtCBxByUWI2JPIpuhhVIpIZmX1MkgYWbYQsIXd0KPQ8qwAiFxV7XHEKhEJ06dcLvv/+OxMREo+esBT104+LizLqWg4MDPvvsM2zfvt3Q65fYjkuf/rCrF46svduRtftn/ZSGDAORpxfswhrAf/H3sH+uhuYRNQH5l84hY+sGsJnp4FgWYi8fOHbqBveho82qsYrcPeA1cSrSVi+H+sE9CJyc4TZkFNxHWdeS4tSpOxg7GTK3RSNp3pf6mm/dMFRbssKqD1OGYeD71SJkbFwD+aEDyNi6AUJnVzh1iYDHmPFGQ20sUdDpqCTS4BBk/7YXOcd+hy4/DwJ7B9jVrgf/Bctg36yF8cECIeSxB/TNs5wOkqCa8H7/Uzh1713ouqbuL6kejGpLVyJ9zfdImvM5GIEQssbN4DduUqHPFG1qClK//x9YeRaEzi6wb9YSfrMXG77glyZGKITfnCXI2rMdOUdikfnzRkAo1E+92aAJJDUKDxmS1qoNaa1QqO7etkmnJQOOFCs7O5sDwGVnZ5vcf/PmTa5p06bczZs3yziy0nfmzBlOIBBwr7/+OqdWq432qdVq7uLFixwAbsmSJYbtT548MXmtbdu2cQC4OXPmFHvPmTNncgC41NRUo+3t27fn2rdvb/hZLpdzALiPP/7YwndVflXWv6WED9/l4scOsXUYpAQpKSncihUruJSUFFuHUi6VlAueR89YSZHatGmDFStWYNKkSWjSpAnGjRuHsLAwCAQCJCQk4OeffwYAOD/X+SQsLAydO3dGjx49EBISAqVSifPnzxsWcYiKiuIlNicnJwQFBWHfvn3o3Lkz3N3d4enpieDgYF6uT0hVo9VqkZqaCq3WvFo2KRolVlKsd999F61atcKyZcvwzTff4MmTJ2AYBtWqVUPjxo0RGxuL7t2fTRq+cOFCHDp0CPPmzUNSUhK0Wi0CAwMxdOhQTJ8+3aKhOyVZu3Ytpk2bhtdffx0qlQqjRo3Chg0beLs+IYRYw6rEeurUKXz33Xe4efMmFArjzjUMw+DevcJduUnF1bBhQ6xbt85om1qtRlpaWqEhMePGjcO4ceOsvtesWbNMPtM3NSdw586d8ffffxfaTsqXgDLo6EJIeWLxzEtnzpxB586dkZ2djZs3b6JOnTqoVq0aHj58CJFIZOgJSgghhFRFFtdYZ86cidGjR+OHH36AWCzG3Llz0aRJE1y5cgURERHo39/0Yr3Fyc3NxRdffIEdO3YgIyMDderUwaefforBgwsvvPu8Dh064OTJk0XuT0xMhK+vb7HHdu/eHbGxsRbHXNWJRCK4u7tDZMY4SFL+lOVC58mLZyP39HGE7D9ucv+9Ph3h+FpH+Hw8A4CJRb8ZBgIHR/2k9INGFOolm77xp0JjxQt4vveRyaXEiqJJSUbayv9Bde8O2KwMMAIhRH7V4BzRBy59Ii1eISX74D6kfrMAjJ3M6P1zLIusvduh+OsCVHH3oMuRQ+TtC4fW7eA2eKRNlmNzc3PD4MGD4eZmerQBMZ/Fn4rXrl3D1KlTDYOy2afLPjVo0ABffvklZs+ejT59LOvm3L9/f1y8eBELFy5EaGgotm7diiFDhkCn02Ho0KIX0125ciXkL0yHlp+fj4iICDRt2tSQVAvUrFkTW7ZsMdpWsCwZsYxAIKCJHiqoirLQecGi35yOhSYhHhmb1uLJ9A9Rbcn3Jicn8Jv/rWH1mwIiC5/pc0oFBPYOcB82BiJvH3BaDfIvnEXaiq/1Y0o/mm72tbRpKUhfvRxCDy/oXliijlOrkLFpDZw6doNzj9chcHGB6s4tZG7dgPxzZwwrt5QlOzs71K5du0zvWVlZnFjz8/Ph6OgIgUAAqVSKtLRn0/XVqVMHN27csOh6Bw8exOHDhw3JFAA6duyI+Ph4TJs2DYMGDSpyrllTK55ER0dDo9EY5o99nkwmo+nveMKyLPLz82Fvb2/2XMDE9irSQufPL/otq98Q4mqBePzReMOUdS+yC60DoYvrS91TUj3YUHMu4NC8NdisTMgPH4TXpGlmj2lNWbYIduGNIHRyRu5p49o6I5EieNNeo3l97Rs2hdjbF0lzPkfe6eNwsnJSCmvl5ubin3/+QePGjeHo6FjyCaRIFj9jrV69OpKT9XPU1qtXD7/99pth38mTJ+FRxILIRdm7dy8cHR0xcKBxc83o0aPx5MkTnD9/3qLrrV27Fo6Ojhg0aJBF5xHLsCyLnJwcQ4sFqRhssdA5Xwrm62UzC887XNqELm76+XqF5r3fnCMxUFz5B96TPza5nxEKTU6WL62jryxoUlOsD9ZKOTk5OHbsGHJycko+mBTL4lLRoUMHQw/Nt99+GytXrkTnzp3Rs2dPzJ0711DrNNe1a9dQt27dQs/qGjRoYNhvrjt37uD06dMYPHiwyW9c9+7dMzwXDAkJwfTp0wv1arZUwVJomqdLFRFirYIvKSUtr2ctPhY6V92783TtVmvurzX5MlfBAgHigEDT19exL1z7WZxxw/sZFh03K1aOA8dqwebIkXPiMOS//wa3AUPNesaqzcxA6g/fwjNqAkRe3iUe/7yC5emkTxdFIBWTxU3BX331FTIy9N8Y3333XeTn52PLli1gGAZffPEFpk83/xkEoF+/s2bNmoW2u7u7G/aba+1afQcGU5MQtG3bFoMGDUKdOnWgUCgQExODxYsX48yZMzh+/HiJH2YvPsuVSqWQSqWG57j//PMPwsPDzY6VkBdduHABYrG4UN8AvthyoXNOqcC9CNPLfxVJp9MnXlYHdUI8Ur9bDKG7p9Ek+c+Le9N4LVWhpxdqbNsPwPwFxwtkbd+E9LUr9T8wDNyGjILH6HfNOjd1+RJIAqrD+eki3ObSpqUgfe1KSEPrwr6lhb8rUq5YnFg9PT2Nxi5++OGH+PDDD18qCKaYBXOL2/c8rVaL6OhohIWFmXyOOnfuXKOfe/bsieDgYEydOhX79u1DZGRksdcPDDT+ljxz5kzMmjULzs7OiIyMxPLlywHolz4rbmm0ykKtViMrKwtpaWlFLoJOSqbVapGeno7Dhw8jNjYWkZGRRjNZlZWECW9B/dxSgx7jJsFt4DAAzxY6V167DMXlv6G8fRPKK/9A8c8l5Bw6gGrfroLguWeypjBSKap9/aPJfY8/Mp2w0tesQPqaFc+uYW+PaktWQuzrb/J4/0XLIXiu8xIjfvbxZs5i489z6tYLssavQpcjR/6/l5C5cwt0ebnwmji12PNyTx9D3rkzqP7DRrM/uwB9c/uT6R8CHAffL+aWaRM74Z/FibVTp05YuXIl6tQpPMn77du38e677+LYsWNmX8/Dw8NkrbSgVlxQcy3JwYMHkZSUhE8++cTsew8fPhxTp07FuXPnSkysCQkJRh94UumzD5LPPvsMAPDdd9+Zfe+KTqfTQalUws7OrtSaLqsSNzc3fPnllxb3qLeELRc6ByMoNITn+X2muEQOglPnCHAaNZQ3ryFjw2okzpyG6qs2m34+GfLKS3deKiBy9zAspG7frAWEjk5IX7sSzhF9IK1luuesTpGP1OVL4dp3IIQenmBz9c8quadTBLK5OWCEIghkMqPz2Bw5nnw6Gdq0VFRb8j3EftV4eQ+WsrOzQ7169ai3Pw8sTqwnTpwo1CxaICcnp9hxpaaEh4dj27Zt0Gq1Rs9Zr169CgCoX7/kdfgAfTOwRCLBiBEjLLo/YN4zLWdn5yJrEgKBANOnT8fkyZORmJgIXSn2lCSVi0AggKenJ1xdXUv9C4otFzq3hsjL25CMZfUbQuTugeSFs5AR/RO8JhVfc+SbtE4YAED96GGRiZXNzgKbmYGsXVuRtWtrof0PIrvCoXU7+H21+Nk5OXI8+WQSNEmJqLZ4OaQ1XymdN2AGNze3Qp1IiXV4Hd2fmJgIe3vLVmuPjIzETz/9hN27dxv15I2Ojoa/vz9atGhRzNl6SUlJOHjwIPr3729Rr+To6GgA4G0IjpOTE5ycyn5gty2wLIu8vDw4ODjQcJsKxFYLnfPBqXME5DG/IjtmH1zfHFYmS5cVUPz7FwBA7G+64xQACN094L90RaHtWT9vguLKP/Cb/z8InV0N2w1JNfEJ/Bd+V2TCLitUpvljVmLdt28f9u3bZ/h5zpw58PLyMjpGoVDgxIkTaNzYslXle/Toga5du2L8+PGQy+WoVasWtm3bhtjYWGzevNnwDxwVFYXo6Gjcu3cPQUHG65RGR0dDq9WaHLsKAKdPn8a8efMQGRmJmjVrQqlUIiYmBqtXr0anTp1KtfmtskpJScHq1asxbtw4XifWJ6XLVgud88Vj7Ht4NCkKmZvXWTRZg7kLjqdH/wQ2MwOyBo0g8vACm5eL/It/Qn7wVzi26wy70GePwDI2rUXG5nWotni5fjFwiRT2DZsWumbOod8AgcBon06lxJPP3ofq7m14jn8fYFkobzwbASF0dTVM0FFWqEzzx6zEeuPGDezcuROAvjPRsWPHCjVbSaVShIeHY9myZRYHsWfPHkyfPh0zZswwTGm4bds2oykNWZYFy7LgOK7Q+evWrUNwcDC6dOli8vp+fn4QCoWYM2cO0tLSwDAMXnnlFcyePRsfffQRPSMkVYotFjrni12dMDi26wz54YNwGzLK7ORj7rAeu9A6yPplB/LOngQrzwYjkUISFAzP8VPg0sd4ulaO0wE6FhwKfyaVhM3MgOqWfjKdtJXfFNrv1LVnoYkqSMXBcKYyVTEEAgHOnTuH5s2bl1ZM5YpcLoeLiwuys7Nt0luzvEpMTKRvt4RUIlSmi2dJLrD4GSt1zCGEEEKKZnXnpaNHj+Lo0aNIT0+Hp6cnOnfujE6dOvEZGyGEEFLhWNwUrFarMWDAABw8eBAcx0EkEkGr1YJhGPTq1Qu7d++uVBMkUFOwaRzHgWVZCIVCiwbCE0LKJyrTxbMkF1jca2f27Nk4dOgQFi5ciOTkZKjVaiQnJ2PRokU4dOgQZs+ebXXgpOJgGAYikYgKICGVBJVp/licWLdt24bPP/8c06ZNMwy58fLywtSpU/HZZ58VWu+UVE7p6enYsGGDRXM5E0LKLyrT/LE4sT569AivvfaayX2vvfYaHj9+/NJBkfJPrVYjPj4earXa1qEQQnhAZZo/FidWLy8vw3SDL7p69WqhiSMIIYSQqsSsxHrq1Cnk5uYCAF5//XXMmDEDe/bsMTpm3759mDVrFvr27ct/lIQQQkgFYVZi7dixI27c0M8SMm/ePNSoUQMDBw6Es7MzQkND4eLigv79+yM4OBjz5s0r1YAJIYSQ8syscazPj8hxc3PDhQsXsGHDBhw/fhzp6elo0qQJOnfujJEjRxotp0YqLxcXF/Tp0wcuLoWX7yKEVDxUpvlj1jjWqjaN4fNoHCshhJBSGcdKY5vI8/Lz8/H3338jPz/f1qEQQnhAZZo/Zk9p2LFjR7NWgWEYBtnZ2S8VFCn/srOzsX//fvj5+Vm8Bi8hpPyhMs0fsxNrhw4daCgNIYQQUgKzE+uMGTOq5DNWQgghxBK0wjchhBDCI0qsxCoSiQRBQUGQSCS2DoUQwgMq0/yh4TYloOE2hBBCLMkFZj1j1el0vARGKg9au5GQyoXKNH+oKZhYJSkpCfPmzUNSUpKtQyGE8IDKNH8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqyEEEIIj8wablOV0XAb01iWRV5eHhwcHCAUCm0dDiHkJVGZLh7vw20IeZFQKKQvGoRUIlSm+UNNwcQqmZmZ2LlzJzIzM20dCiGEB1Sm+UOJlVhFqVTixo0bUCqVtg6FEMIDKtP8ocRKCCGE8IgSKyGEEMIjSqyEEEIIjyixEqs4OTmhU6dOcHJysnUohBAeUJnmD41jLQGNYyWEEGJJLqAaK7GKUqnErVu3qAchIZUElWn+UGIlVsnMzMTPP/9MY94IqSSoTPOHEishhBDCI0qshBBCCI8osRJCCCE8osRKrCISieDl5QWRiNZxIKQyoDLNHxpuUwIabkMIIYSG2xBCCCE2QomVWCUpKQkLFixAUlKSrUMhhPCAyjR/KLESq3AcB7VaDXqSQEjlQGWaP5RYCSGEEB5RYiWEEEJ4RImVEEII4RENtykBDbcxTaPRIC0tDZ6enhCLxbYOhxDykqhMF8+SXEAjgYlVxGIx/Pz8bB0GIYQnVKb5Q03BxCrZ2dn47bffkJ2dbetQCCE8oDLNH0qsxCr5+fm4dOkS8vPzbR0KIYQHVKb5Q4mVEEII4RElVkIIIYRHlFgJIYQQHpWLxJqbm4v3338f/v7+sLOzQ6NGjfDzzz+XeN6GDRvAMIzJl6n5Lo8cOYJWrVrB3t4enp6eeOutt5CSklIab6nSc3BwQMuWLeHg4GDrUAghPKAyzZ9yMdymf//+uHjxIhYuXIjQ0FBs3boVQ4YMgU6nw9ChQ0s8f/369ahTp47RNg8PD6OfT548iR49eqBXr17Yt28fUlJS8Mknn6Bz5864dOkSpFIpr++psnN2dkb37t1tHQYhhCdUpvlj88R68OBBHD582JBMAaBjx46Ij4/HtGnTMGjQIAiFwmKvUb9+fTRr1qzYY6ZNm4bQ0FDs2rXLsJBvjRo10KZNG6xbtw7jx4/n5w1VEWq1GsnJyfDx8YFEIrF1OISQl0Rlmj82bwreu3cvHB0dMXDgQKPto0ePxpMnT3D+/PmXvsfjx49x8eJFjBgxwpBUAaB169YIDQ3F3r17X/oeVU16ejrWrVuH9PR0W4dCCOEBlWn+2DyxXrt2DXXr1jVKeADQoEEDw/6S9O7dG0KhEO7u7ujfv3+hcwp+Lrjmi/cx5x5yudzopVKpSjyHEEJI1WPzxJqeng53d/dC2wu2FfftydfXF9OnT8eaNWtw/PhxzJkzBxcvXkTLli1x+fJlo3s8f80X72PON7TAwEC4uLgYXgsWLCjxHEIIIVWPzZ+xAgDDMFbti4iIQEREhOHndu3aoVevXggPD8eMGTOwb98+s65V3D0KJCQkGE28TJ2dCCGEmGLzxOrh4WGyxpiRkQHAdC2zOMHBwWjbti3OnTtndA/AdO03IyPDrHs4OzvT6jbPEQgEsLe3h0Bg80YPQggPqEzzx+a/wfDwcNy8eRNardZo+9WrVwHoe/xaiuM4oz+OgmsUXPPF+1hzj6rOx8cH06ZNg4+Pj61DIYTwgMo0f2yeWCMjI5Gbm4vdu3cbbY+Ojoa/vz9atGhh0fUePHiAP/74Ay1btjRsq1atGpo3b47NmzeDZVnD9nPnzuHWrVvo37//y70JQggh5CmbNwX36NEDXbt2xfjx4yGXy1GrVi1s27YNsbGx2Lx5s2EMa1RUFKKjo3Hv3j0EBQUBALp06YJ27dqhQYMGcHZ2xtWrV7F48WIwDIM5c+YY3WfRokXo2rUrBg4ciAkTJiAlJQWffvop6tevj9GjR5f5+67oUlJS8PPPP2Pw4MHw9va2dTiEkJdEZZo/Nk+sALBnzx5Mnz4dM2bMQEZGBurUqYNt27Zh8ODBhmNYlgXLsuA4zrAtPDwc27dvx9KlS6FQKODt7Y1OnTrhyy+/RGhoqNE9OnTogIMHD2LGjBno06cP7O3t0bt3byxZsoQ6IlmBZVlkZmYatQAQQiouKtP8YbjnMxUpRC6Xw8XFBdnZ2dR56TmJiYlYvXo1xo0bBz8/P1uHQwh5SVSmi2dJLrD5M1ZCCCGkMqHESgghhPCIEiuxiru7O4YNG2bxOGNCSPlEZZo/5aLzEql4pFIpatWqZeswCCE8oTLNH6qxEqvk5OTgxIkTyMnJsXUohBAeUJnmDyVWYpXc3FycPHkSubm5tg6FEMIDKtP8ocRKCCGE8IgSKyGEEMIjSqyEEEIIjyixEqvY2dkhPDwcdnZ2tg6FEMIDKtP8oSkNS0BTGhJCCKEpDUmp02q1yMjIKLSOLiGkYqIyzR9KrMQqqampWL58OVJTU20dCiGEB1Sm+UOJlRBCCOERJVZCCCGER5RYCSGEEB5RYiWEEEJ4RMNtSkDDbQghhNBwG0IIIcRGKLESq6SlpWHt2rVIS0uzdSiEEB5QmeYPJVZiFY1Gg0ePHkGj0dg6FEIID6hM84cSKyGEEMIjSqyEEEIIjyixEkIIITyixEqs4urqisjISLi6uto6FEIID6hM80dk6wBIxSSTydCgQQNbh0EI4QmVaf5QjZVYJS8vDxcuXEBeXp6tQyGE8IDKNH8osRKryOVyxMTEQC6X2zoUQggPqEzzhxIrIYQQwiNKrIQQQgiPKLESQgghPKLESqwikUgQEhICiURi61AIITygMs0fWjauBLRsHCGEEFo2jpQ6nU4HlUoFnU5n61AIITygMs0fSqzEKsnJyVi4cCGSk5NtHQohhAdUpvlDiZUQQgjhESVWQgghhEeUWAkhhBAeUWIlhBBCeETDbUpAw21MY1kWSqUSdnZ2EAqFtg6HEPKSqEwXz5JcQMvGEasIhUI4ODjYOgxCCE+oTPOHmoKJVTIyMrBt2zZkZGTYOhRCCA+oTPOHEiuxikqlwu3bt6FSqWwdCiGEBxW9TKsfPUTa2pVImvcl0tauhPrRQ5vFQk3BhBBCKjR57AGk/G8+wDAAOAAMsrZvhvdHn8O5e+8yj4dqrIQQQios9aOH+qTK6QAdC+ie/pfTIeXr+VA/TijzmCixEkIIqbDkhw48ramawADy2P1lGxAosRIrOTk5oVu3bnBycrJ1KIQQHlTUMq1NSoS++be4/WWLnrESqzg6OqJVq1a2DoMQwpOKWqZFvn7F5VX9/jJGNVZiFYVCgevXr0OhUNg6FEIIDypqmXbu3hsoZp4j54g+ZRiNHiVWYpWsrCzs2rULWVlZtg6FEMKDilSm2axMpK1ZgeSFsyAJqA6vjz4HwAACISAQGF7eH34OSbXAMo+PmoIJIYRUCGxWJjJ3bkH2r7sBhoFrv4HgdDq4RPSBLLwR5LH7oU1KhMjXD84RfWySVAFKrIQQQioAnUqJ+LFDwKnVcI18E65vDIXQ2cWwX1ItEJ5RE2wY4TOUWAkhhJRLbFYmsn7ZCbdBIyCQyeAz7UvY1a1vlFDLo3LxjDU3Nxfvv/8+/P39YWdnh0aNGuHnn38u8bw9e/ZgyJAhqFWrFmQyGYKDgzFs2DDcuXOn0LEdOnQAwzCFXhEREaXxlio9kUgEX19fiET03YyQyqA8lWltZgbSflqOuBGRyNrzM1R3bwEAHFq0KfdJFSgny8Z169YNFy9exMKFCxEaGoqtW7dizZo12LJlC4YOHVrkeS1atICvry/69euHmjVrIiEhAfPnz0dCQgLOnTuHsLAww7EdOnRAQkICtmzZYnQNV1dX1KlTp8h70LJxhBBSdrL370Ha6u8ARqBv8h0wpFwkU0tygc0T68GDB9GrVy9s3boVQ4YMMWzv1q0brl+/jocPHxa5NmBKSgq8vb2Ntj158gTBwcEYOXIk1qxZY9jeoUMHpKWl4dq1axbFR4mVEEJenvrRQ8gPHXjWuah7b0gCqgPQN/myebmQVAtE/qXzUFz9p9wk1AKW5AKbNwXv3bsXjo6OGDhwoNH20aNH48mTJzh//nyR576YVAHA398fAQEBSEgo+/khq5LExETMnTsXiYllP6sJIYR/pVmm5bEH8HDMYGTt2ILcU0eRtWOL/uc92w1NvumrlwMA7Ju1gMfod8tVUrWUzRPrtWvXULdu3ULt+g0aNDDst8T9+/cRHx9v1Axc4N69e3B3d4dIJEJISAimT59u9mBouVxu9KqoSyvxiWVZW4dACOFRaZTp4ibJT/vhG2T/ugeuA4bA+6PpvN/bVmyeWNPT0+Hu7l5oe8G29PR0s6+l1WoRFRUFR0dHfPDBB0b72rZti//973/YvXs3fv31V/Ts2ROLFy9GREQEdDpdidcODAyEi4uL4bVgwQKz4yKEkKqq2EnyATj1eB0eb71ToWuoL7J99y8ATDG/9OL2PY/jOERFReH06dPYvXs3AgONBwbPnTvX6OeePXsiODgYU6dOxb59+xAZGVns9RMSEoza1aVSqVlxEUJIVaZNStTXVk0RCKDLzCjbgMqAzWusHh4eJmulGRn6X7ap2uyLOI7D2LFjsXnzZmzYsAF9+/Y1697Dhw8HAJw7d67EY52dnY1elFgJIaR4yv+uQ3XvdrFz+dpikvzSZvPEGh4ejps3b0Kr1Rptv3r1KgCgfv36xZ5fkFTXr1+PNWvWGJKlJQQCm/8aKhxPT0+MHz8enp6etg6FEMIDvso0p9OhYLBJ+tqV4FQqAEW3PNpikvzSZvOMEhkZidzcXOzevdtoe3R0NPz9/dGiRYsiz+U4Dm+//TbWr1+PVatWYfTo0RbdOzo6GgDQsmVLywOv4sRiMby9vSEWi20dCiGEBy9bpnVqFeQxv+Lh2CFQ/HUBAODz+WwEbdwN76nTAUZQbibJL202f8bao0cPdO3aFePHj4dcLketWrWwbds2xMbGYvPmzYYxrFFRUYiOjsa9e/cQFBQEAJg8eTLWrl2LMWPGIDw83KhJVyqVonHjxgCA06dPY968eYiMjETNmjWhVCoRExOD1atXo1OnTujTp/J9YyptWVlZOHXqFNq1awdXV1dbh0MIeUnWlmk2R47s/XuQ/csOsFmZcGj1GoRu+kd4IjcPAPql3ezqNyw3k+SXNpsnVkA/NeH06dMxY8YMZGRkoE6dOti2bRsGDx5sOIZlWbAsi+fns9i/fz8AYN26dVi3bp3RNYOCghAXFwcA8PPzg1AoxJw5c5CWlgaGYfDKK69g9uzZ+Oijj6gp2AoKhQL//PMPXn31VUqshFQClpZpjuPAMAzkB/chc/M6OHXrCdcBQyAJDDJ5fHmaJL+02XzmpfKOZl4yLTExEatXr8a4cePg51f5Oh8QUtWYW6aVd/5D1o4tEHn7wPPtidDl50GnUhpqp5WVJbmgXNRYCSGE2I760UNk7d8LAMj6ZQc8+kQaphsE9LXT/It/ImvnVij+vQSRrz/cm7wKABDYO0Bg72CTuMsragMlhJAqrGC6wZzDMQCAnMMxeDhmsH5ih6fUcfeROP1D6BT58P1iHoI27IBzj9dtFXK5RzVWYhUHBwe0adMGDg70TZWQiur56QbtVArUS7gHO5UC4HRIWToP8tj9qPa/HyGtEYLAHzZCEvKK2ZP2VGWUWIlVnJ2d0aVLF1uHQQh5CYbpBjnAXq1C4/jbz+3loMvLA6dUgJHZQ1or1GZxVjTUFEysolKpEBcXR4sREFKBaZMSAej7r2qEQiS7uENTsEwnw0ASVAMCmb3tAqygKLESq2RkZCA6Otow9SQhpGLR5eeBzZHrV5sBkGPngCPhLZBj9/TxDsNUyukGywI1BRNCSBWienAP2ft3I+dILDhl8ctmVsbpBssC1VgJIaSS49RqcGo1ACBr11bk/XESrv0HI2jzL/Ce+sXT6QafpgMBU6mnGywLVGMlhJBKSpOcCPmBXyCP/RXuo9+FS8++8HxnMgQffAZGpP/4Fz+dblDz6x4gJQtOXXui+uv9Kam+BEqsxCoCgQBOTk40HSQh5ZDyxjVkbNuA/AtnIbCTwalbT8ga6OdON7WguKRaINz7D4bTli1w7z8YEh+fsg65UqEpDUtAUxoSQmxN/egh5IcOPJvAvntvo5mRAIDNzoJOkQ+xrz9yjv2OzB2b4fJ6fzh17A6BTGajyCsPS3IBJdYSUGIlhNiSPPaAfhIHhoF+aAwDcBy8P/ocTt16QXXzOrL370buyaNwaNMevtPngNPpAIahyRx4RImVR5RYTUtOTsaWLVswbNgw+FCzESGlQv3oIR6OGQxwOhN7GYirB0HzMA4iv2pw6R0J5+69IXRxtepeVKaLR5Pwk1Kn0+mQk5MDnc5UgSeE8OH5mZEKYQCOZeE3/xvYN20B5iX7O1CZ5g8lVkIIKae0SYlF1FYBMAzsXqkDh1dblW1QpETUpZMQQsopgZMzUMzTOpoZqXyixEoIIeWE+mEc0tf+gCfTPwQAuES+CaDoDkg0M1L5RE3BxCru7u4YNWoU3N3dbR0KIRWaTq1CTux+yA8fhOq/GxA4OsGxQxdwajWkgUHwnjodKV8/3ytYj++ZkahM84d6BZeAegUTQvjGaTRQ3vkPsnrh4LRaxA2PhPSV2nDu2hP2LdtAIJEaHa9+nAB57P5n41gj+tDMSGWMhtvwiBKraXK5HBcuXEDz5s3p90KIGTiOg+rOLeQc/g05xw9Dl5ODGtsPQOjqBp1aVSiZljUq08Wj4Tak1OXl5eGPP/5AWFgYFUJSpZkzKxLHsng0aQxUd25B6O4B52694NS1B4SubgBg86QKUJnmEyVWQgixkqlZkbK2b4bXpKkQ2Nsj9/Rx+Hw+GwKJFE5de8J99Luwb/IqGCF99FZm9K9LCCFWUD96qE+qnK7QBA6p3y0GANiFNwKbng6Bnz9cIwfZIEpiC5RYCSHECvJDB4reyTBw6tUPPlM+KbuASLlBiZVYRSaToXHjxpDRqhmkiuF0Oij/u468MyeLnRWJy80t28BeEpVp/lBiJVZxdXXF66+/buswCCkTnE5nmIv38dT3oLz6Dxg7O+gnbzA9sKKizYpEZZo/NPMSsYpGo0FKSgo0Go2tQyGkVHBaLfL/voCUbxchbnBvaBIfAwDcBg5Fta9/QMCKDU87LZlW0WZFojLNH0qsxCppaWn44YcfkJaWZutQCOFd2o/L8ODNnnjyyWTk/3UOTl16AE978jq0eg2yBo0hrR4M748+BxgBIBACAoHhxfesSGWByjR/qCmYEFKplTTOVKdSIv/SeeSdOQHPCR9A6OQMxs4OLr0i4dCuI6S1ahe5YLhz996wq9+QZkUiRiixEkIqraLGmXp/9DkE9g7IPXEEeRfOglMqIAkOgTYlGUInZ3i89Y7Z95BUC4Rn1IRSew+k4qHESgiplIobZ5ry9XzY1W8ATqmA25BRcHytIySBQbYJlFQ6lFiJ1YRCoa1DIKRIxY8zBaR1wuA1blLZBVQBUJnmByVWYhU/Pz988cUXtg6DECM6pRKKq//CvlkLaJMSix5nCoBNTSnDyMo/KtP8ocRKCKmwOI6D5mEc8i7+ifyL56D8f3t3HhbFlf4L/Fu90A207LKjxLixCF5NBNT8iFGMuMfElSgqRsclqMkdNU6iaNxjJsa4RI2JjiTo3FGMXpcoLhNHjVs0AaMGV0BAFEQasOnt/P5AGNpuuoGu7gZ8P8/Do5w6VfWeQxUvVX1OVfoVMJUSAZu/r5xHyglqTa5NbZ4paTpoug1pkIcPH2LTpk14+PChrUMhLxhtWRnKL52r/j73o1ko+vZrcAIB3CdNQ6tvd8EusA2c3hxodDtNbZ6ppdE5zR+6YiUNolarkZ+fD7VabetQSBNWp1euMQbl7Zsov3AWZRfOQnH1d0CjQeA/D0Dk6g6fZV9A7O0LgVSqs56dfyt4fjgfBZ/XHBVcqSnOM7U0Oqf5Q4mVEGITxqbCOEa9hoo7N+EQ3hVQq5HzwRRAy+Dwf15By+kfwOGVSIhc3QEAksA2te6D5pkSW6DESgixOqNTYVYvATgOnEiMl1KPQCCRwv+LTbDzbw3Ozq7e+6J5psTa6DNWQojVPTm0z+hy+1ci0Xr7vyCQVN7elbRp16CkSogt0BUraRAXFxe88847cHFxsXUopIlQPy6E/KcDeJp+BeWXztc+FUYggNBRBlFLT+sG+IKjc5o/dMVKGsTe3h4hISH07kZikLa8DOUXz6Fw2yYUp+4CADCFAkU/bAPTaCANDq2cClMLmgpjfXRO84euWEmDlJaWIj09HZ06dYJMJrN1OMRC6jJqF/jv+0rLr1xC4ZZ1qLj5J6DVQODsAqc+sQAAkbcv2qQeAScUQZmThayJo2rdL02FsT46p/lDiZU0iFwux5EjRxAYGEgnYTNlbNSufeeuePr7FSgyruBp+hW06NUXbmMTIJTJYBfQGk79h8A+NBziVoHVb4bhOK761Ws0FabxoXOaP5RYCSF6TI7afcYusA3sw7tAGhoOAJC07QCveUl12gdNhSHNFSVWQoiewm2bAMYML+Q4OPaIhufsjyB0cjZrPzQVhjRHlFgJeUExjQaqnCxUZF6H4uYNVGTegPfflkDk5o6Ka1ehd6la5dkcU3OTKiHNFSVW0iASiQTt27eHRCKxdSgvrLoOLAIAplJBee8OVAX5kHX/HzDGcHfMEGiKHgEAxL7+kLTtAFahAAA4RvfGk907Aa3G4PZo1G7zQ+c0fzjGarvfQwCgpKQEzs7OePLkCZycnGwdDiEADA8sAmPw/HA+WvQdAI7joC58hKJ/bEFF5g1U3L0FqFTgpFK02XsMnFAI+YmjELq5QfJyewhlLXS2Xz1q19BcU4Gg8kH39FkoeYHUJxdQYjWBEqthGo0GCoUCUqmUXo5sZUaTHgCHV6Pgu+wLaErluP/hVEjadYSkbQdI2nWApE07COo4T7Hkp/9f66hdU2+OIU0PndPG1ScX0K1g0iAFBQXYvHkzJk+eDB8fui1oSH1u1RrDNGqo8nKhysmCMvse5McOG19BVHlaC2Ut0GpTckNCB0Cjdl80dE7zhxIrIRZgbA6ooas9xhi0T4qhzLkHVU42lNn34Do8DkIXVzxYtRilx48AADipFJxIjFoHFgkE1c/X5QON2iWk/iixEsIz43NAl0Lg6gZUVEAjL4Fz/yEAgHvjhkGdn1dZieMg8vJGizfehNDFFS7DRsHpzYEQ+7eGyKMlCr/7GsX//B5gNLCIkMaoUTwruLS0FLNmzYKvry+kUik6d+6MnTt31mndgoICjB8/Hh4eHnBwcEBUVBSOHTtmsG5aWhqioqLg4OAADw8PjB8/HgUFBXw2xSRlThYebd2A/KWf4NHWDVDmZFl1/6SSpX4OjDEU7/uXsRrI/9sHyF/8EYp2fIOqIQ5uYybA+5NlCNicjDb7TyBwRyokL7cDAEg7BMOhSzeIPb3ACQSVV7xGhkbQ4wAJsa1GccU6bNgwXLhwAStWrED79u3xww8/YPTo0dBqtRgzZkyt61VUVKB3794oLi7Gl19+CU9PT6xfvx79+vVDWloaoqOjq+v++9//RmxsLAYMGIAff/wRBQUFmDt3Lnr37o2LFy9aZYh5fW8PEssw5+egLiqEuiAf6kcPoX5UAPXDArSI6Q9JYBs8/n/fo+i7TWAqZe0b4DjYh3eF1/zFELq4Vj/uzyl2cJ3jp8cBEtK42XxU8MGDBzFgwIDqZFqlb9++uHr1KrKysmodobZhwwZMnz4dZ86cQVRUFABArVYjPDwcMpkM586dq67brVs3lJWV4bfffoPo2eCOM2fOoEePHtiwYQOmTp1qcB98jQo2OpKTE6DVd/xMX+BrwIypfRQf3g9Ffj6k3t5w6TfIIvuwRDtM/Rz8N2yDKvteZdJ89BDqhwXQPHkMv9UbwHEcsv4yDspbf1ZWF9tB1NITHjP+LxxfjYTijwwoblxF+W+/ovzMqVqnqriMeJeXzy2V97NpYBHhjVarhUqlglgshkDQKG5mNipNarrNe++9h507d+Lx48fVCQ8AUlJSMGbMGJw+fRrdu3c3uG5MTAyys7Nx/fp1nfLly5dj/vz5yMnJgZ+fH+7fvw9/f38sX74c8+bN06nboUMHtG7dGkeOHDG4D74S66OtGyo/F6tlwr20c1f4JK2E0FEGZdZdMGUFBLIWELRwgsDeAVwdDnRjcxv5uiJuKvuoSoia0lJo5SXQlsphH94FTw7tQ/Gu5FqTntPAYSjZ9y9wUnuIWnpWfrm3hOeseeDs7KC4fhWcSAxRS08InJyrrzhrojmghDQ/TWq6TUZGBoKCgnSSKgCEhYVVL68tsWZkZOC1117TK69a9+rVq/Dz80NGRoZO+fN1T58+bVYb6qJyYErtf8Mo0n8Dq6gAHGUo/HYjyk7/+78LBQJ4TH4fLm+PxtPfL6MoeSsEMicIZTIIWrSA2DcA9uFdjA6YkYaGQ+zlA3AABEKDCcGUmoNySiQOuPhyMF659QecFOUo+HwZpKHh9U4YjDFAqwFTqcE0aiiz7qLg86UAmMF2MK0WzrGDoS58hIfr/w5taWXS1MjlYIqnCPznQXAch7ykuaj485rO+l4fLTb5c9A8KcZLe9MgcHA02EfSjiEm20S3aklTVFhYiEOHDiE2Nhbu7u62DqdJs3liLSwsRJs2bfTK3dzcqpcbW7eqnrF1q/6tra6xfVQpKSnR+V4ikdTrc9nKkZq1JDOBAC7Dx0DkVnkwt5z+IVxHj4e2tASaUjm0cjmkHYOfbUgEoZMzNHI51AX50MpLIPb1hyo/t/adc0DJ4f3QFD6C/OjByl/2IhE4kRiuI8fCLW4CnmZcwYNVn4ITiZ59iSHy9IJP0koAQP7yBVDc+KP6KkwtFCHPtSXUz14DBqZF7kezIPb2AVOr4Rj1GlyHx6Hi7m3kL/4ITK0G1CowlQqcRILA5L0AgKxJo6HKuvtcvIJaBucwFO/ZBefYweCEQmjLSiF0cobY1x8CWYvKpwdpNYBQhJaz5gJaBoFMBmELJwgcHcEJRai4c/PZ9g3fORD7+ELoaP4rs2gOKGlqlEolbt26BaXSyBgBUic2T6wAjF49mbqyqs+6tdWty9VbQIDuL8SFCxciKSnJ5HpVnN4cWHkLsrblNUZyVt2CNMQ+uBPsgzvplecv/QTGrsTU+XlwHvIO7MO7gKnV1YlO0qEyYQtd3CCL7g2oVGCayuWCGo+544QisKcKo21kKhWEzi7ghCIInV0qtyuTwbFbd0AsBicUgROLwNWYZ+kePxnap+XVybx47z+huPq74R1wHCSBbZ7F6wq/lWtrjUXarqPB8vr8HMxFc0AJeTHZPLG6u7sbvGIsKioCYPgqs77rVt3WqK2usX1Uyc7O1rmvXt9RxJa+PSjy9qn9SozjIPL2gX1oOOyfvTfTUHzGkoDXnAXGPycWCNCiTz+9bYg8POHxl5m1blf2P2/ofK+4eQOKPzKMtsMcdJuWEGJpNk+snTp1QkpKCtRqtc7nrOnp6QCA0NBQo+tW1avp+XWr/k1PT0f//v316hrbRxUnJyeznxVsyduD1rgSa077oNu0hBBLsfmY6rfeegulpaXYvXu3Tvn27dvh6+uLiIgIo+tev35dZ1qNWq1GcnIyIiIi4OvrCwDw8/NDt27dkJycDI3mv1dCv/zyC27cuIFhw4bx3KraVd0e9P7bp/BImMbbL/OqKzFwAkAgBASC6i++rsRq7sNBpcQrt/+Ag6rCYvuwVDsAy/0cCGmqnJycEBsbSy8b4YHNp9sAlXNWL168iJUrV6Jt27ZISUnBli1bkJycjLi4OABAQkICtm/fjlu3bqF169YAKh8Q0bVrV5SUlGDFihXw9PTEhg0bsH//fr0HRJw8eRIxMTEYNGgQpk2bhoKCAsybNw/Ozs5GHxDR1N5uY425jc1lH4QQUlf1ygWsEZDL5SwxMZF5e3szOzs7FhYWxlJSUnTqxMfHMwDszp07OuX5+fls3LhxzM3NjUmlUhYZGcmOHj1qcD9HjhxhkZGRTCqVMjc3NzZu3Dj24MEDo7E9efKEAWBPnjwxq43NTXl5Ofvtt99YeXm5rUMhhPCAzmnj6pMLGsUVa2PW1K5YrSUvL49eMUVIM0LntHH1yQU2/4yVEEIIaU4osRJCCCE8osRKCCGE8IgSK2kQsVgMf39/iMViW4dCCOEBndP8ocFLJtDgJUIIITR4iRBCCLERSqykQfLy8rBo0SLk5eXZOhRCCA/onOYPJVZCCCGER5RYCSGEEB5RYiWEEEJ4RImVEEII4RFNtzGBptsYplarUVJSAicnJ5336BJCmiY6p42rTy6g3iMNIhKJ4ObmZuswCCE8oXOaP3Qr2ISKigqdf0mlBw8eICkpCQ8ePLB1KI1KRUUFkpKS6HgxgPrGsMbSL48fP8aePXvw+PFjm8ZRU2Ppm/qixGoCJVbDSkpKwHEcSkpKbB1Ko1JRUYFFixbR8WIA9Y1hjaVfFAoF0tPToVAobBpHTY2lb+qLEishhBDCI0qshBBCCI9o8JIJVYOm5XI53fasobS0FAqFAqWlpdQvNVT1BfWJPuobwxpLv8jlcigUCsjlcjg6Oto0liqNpW9qxlCXiTQ03caE27dv4+WXX7Z1GIQQQhqB7Oxs+Pv7G61DidUErVaL3NxctGjRAhzH2TocQgghNsAYg1wuh6+vLwQC45+iUmIlhBBCeESDlwghhBAeUWIlhBBCeESJ9TmlpaWYNWsWfH19IZVK0blzZ+zcubNO6+7ZswejR49G27ZtYW9vj8DAQMTFxSEzM9PCUfPHnPYXFBRg/Pjx8PDwgIODA6KionDs2DELR2wdDe2X5nBMmGLOMVPTxx9/DI7jEBoaaoEorc/cfvnxxx8RHR0NJycnODo6IiQkBJs3b7ZgxNZjTt+cOHECMTEx8PT0hEwmQ1hYGNauXQuNRmPhqOuBER0xMTHMxcWFff311+z48eNs0qRJDAD7/vvvTa7brVs3NnjwYPbtt9+ykydPsh07drCgoCAmk8lYRkaGFaI3X0Pbr1AoWGhoKPP392fJycnsyJEjbMiQIUwkErGTJ09aKXrLaWi/NIdjwhRzzpkqly9fZhKJhHl5ebGQkBALRms95vTL8uXLmUAgYNOmTWOHDh1iaWlpbN26deyrr76yQuSW19C+OXr0KBMIBOz1119ne/fuZUePHmXvv/8+A8ASExOtFL1plFhrOHDgAAPAfvjhB53ymJgY5uvry9RqtdH1Hzx4oFd2//59JhaLWUJCAq+xWoI57V+/fj0DwM6cOVNdplKpWHBwMOvWrZvFYrYGc/qlqR8Tpph7zjBWeZx07tyZJSYmsujo6GaRWM3pl4sXLzKBQMBWrlxp6TBtwpy+iYuLYxKJhJWWluqU9+3blzk5OVkk3oagW8E1pKamQiaTYfjw4TrlEyZMQG5uLs6dO2d0fU9PT70yX19f+Pv7Izs7m9dYLcGc9qempqJDhw6IioqqLhOJRHj33Xdx/vx53L9/32JxW5o5/dLUjwlTzD1nAGDFihUoKirC0qVLLRWm1ZnTL+vWrYNEIsH7779v6TBtwpy+EYvFsLOzg729vU65i4sLpFKpReJtCEqsNWRkZCAoKEjvXYRhYWHVy+vr9u3buHfvHkJCQniJ0ZLMaX9GRkZ1PUPrXr16lcdIrYvv46IpHROmmNs3f/zxB5YsWYKNGzdCJpNZLE5rM6dffv75ZwQFBWH37t3o0KEDhEIh/P39MW/ePCiVSovGbQ3m9M1f/vIXKJVKJCYmIjc3F8XFxdixYwdSU1MxZ84ci8ZdH5RYaygsLDT4PsKqssLCwnptT61WIyEhATKZDLNnz+YlRksyp/18911jwmfbmtoxYYo5faPVajFx4kQMGzYM/fv3t1iMtmBOv9y/fx+ZmZlITExEYmIi0tLSMH78eKxevRoTJkywWMzWYk7fRERE4Pjx40hNTYWfnx9cXV0xYcIELF26FB9++KHFYq6vZvus4JMnT6JXr151qnv58mV07twZAIw+Xak+T15ijCEhIQGnTp3C7t27ERAQUOd1bcmc9vPVd40RH21rqseEKQ3tm7///e/IzMzEvn37LBGWzTW0X7RaLeRyOVJSUjBq1CgAQK9evVBWVoY1a9Zg0aJFaNu2Le/xWlND++bSpUt46623EBERgU2bNsHR0RHHjx/Hxx9/DIVCgU8++cQS4dZbs02sHTp0wJYtW+pUt1WrVgAAd3d3g38tFRUVAYDBv7IMYYxh0qRJSE5Oxvbt2zFkyJA6Rm1b5rSfr75rjPhoW1M9JkxpaN9kZWVhwYIFWLFiBezs7FBcXAyg8opeq9WiuLgYEolE77O0psLccyk/Px9vvvmmTnlsbCzWrFmDX3/9tUknVnP6Zvr06fDy8kJqaiqEQiGAyj86BAIBkpKSEBcXhzZt2lgm8HpotonVx8cHkyZNqtc6nTp1QkpKCtRqtc79//T0dACo0/y6ql+g3333HbZu3Yp33323foHbkDnt79SpU3W9murTd42VucdFUz4mTGlo39y+fRtPnz7FzJkzMXPmTL3lrq6umDlzJtasWWORuC3NnGMmLCwM+fn5euXs2dNnTT2ntrEzp2+uXLmC0aNHVyfVKq+++iq0Wi2uXbvWKBIrTbep4eDBgwwA27lzp055v3796jR1QKvVsoSEBMZxHNu8ebMlQ7UIc9q/YcMGBoD98ssv1WUqlYqFhISwiIgIi8VsDeb0S1M/JkxpaN88fvyYnThxQu8rPDycBQYGshMnTrDMzExrNMEizDlmNm3aZHBOZ2JiIhMIBOzu3bsWidlazOmbl156iYWGhurVmT9/PgPArly5YpGY64sS63NiYmKYq6sr27x5Mzt+/Dh77733GACWnJysU2/ixIlMKBTqHOQzZsxgANjEiRPZ2bNndb5+/fVXazelQerSfkNtVygULCQkhAUEBLDvv/+eHT16lL311lvN6gERDemX5nBMmNLQvjGkucxjZazh/aJUKlmXLl2Ys7Mz+/LLL9nRo0fZ3LlzmVAoZDNmzLBFU3jX0L5Zu3YtA8BiY2PZ3r172ZEjR9jcuXOZSCRiffr0sUVTDKLE+hy5XM4SExOZt7c3s7OzY2FhYSwlJUWvXnx8PAPA7ty5U13WunVrBsDgV+vWra3XCDPUpf2G2s4YY/n5+WzcuHHMzc2NSaVSFhkZyY4ePWrF6C2nof3SHI4JU8w5Zp7XnBKrOf1SWFjIpkyZwry8vJhYLGbt27dnn332GdNoNFZsgeWY0ze7d+9mPXv2ZB4eHszR0ZGFhISwTz/9VO+hEbZEr40jhBBCeNS0PwUnhBBCGhlKrIQQQgiPKLESQgghPKLESgghhPCIEishhBDCI0qshBBCCI8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqyEEN5t3LgRXbp0gVgsRlJSkt7yy5cvIyoqChUVFZgwYQICAgLg5OSEyMhInDlzxvoBE8IjSqyEEN75+Phg0aJFGDp0qMHlhw8fRr9+/aBWq/HSSy/h9OnTKC4uxtSpUzF48GCUl5fXaT9arRZTpkyBo6MjgoKCcO7cOR5bQUjDUGIlhPBu6NChGDRoEJydnQ0ur0qsjo6OWLBgAVq1agWBQID4+HhotVpkZmbWaT+7du3ChQsXsH//fkyYMAHjx4/nsRWENEyzfdE5IaRxksvl+PPPP/Hqq6/qLbt+/TqePn2Kl19+uU7bKi4uhq+vL0JDQ6FSqZCXl8d3uITUG12xEmIFv/zyC4YPHw4fHx/Y2dnBx8cHI0aMwIULF+q1ncWLFyM4OBhardZCkVpeWloaXn/9dQgEur9+ysvLMXbsWHz88ceQyWR12tY777yDP//8E15eXujXrx+WLFmiV2fr1q3w8/NDWVkZL/ETYgolVkIs7KuvvkKPHj2Qk5ODVatWIS0tDZ999hmys7MRGRmJzZs312k7ubm5WLVqFRYvXqyXlJqSqtvANalUKowYMQLBwcGYP39+nbfVsmVLtG3btvr7iIgIvTrx8fFwdHTEqlWrGh40IfVh6xfCEtKc/ec//2ECgYANHDiQqVQqnWUqlYoNHDiQCYVCdv78eZPbmjNnDvPz82tSL7tOSEhgCxcu1CkLDAxkeXl51d9rNBo2atQoNnjwYL0+MiUrK4sJBAIWGxvLBAIBmzx5ssF6q1evZs7OzqysrKzebSCkvprun72ENAHLly8Hx3HYuHEjRCLdIQ0ikQgbNmyormeMUqnE1q1bMWbMGJ2r1Zs3b2LChAlo164dHBwc4Ofnh0GDBiE9PV1vG0lJSeA4Dr///juGDx8OZ2dnuLm54YMPPoBarcaNGzfQr18/tGjRAoGBgXpXeOPHj0dgYGCt261JrVZDoVBAo9Ho/P/atWtwcXGBt7d3dd0pU6YgLy8Pu3bt0usjU7799ltotVosWLAAffr0QUpKisFbvnFxcSgpKcHOnTvrtX1CGoISKyEWotFocOLECbzyyivw9/c3WCcgIABdu3ZFWlqa0c9Nz507h8LCQvTq1UunPDc3F+7u7lixYgUOHz6M9evXQyQSISIiAjdu3DC4rREjRiA8PBy7d+/Ge++9hy+++AKzZ8/G0KFDMWDAAKSmpuKNN97A3LlzsWfPnga1fcmSJbC3t8e2bduwdOlS2NvbY8eOHXq3ge/du4dvvvkG586dg4eHB2QyGWQyGU6dOmVyH1qtFt999x2CgoIQGRmJiRMnQi6XY9euXXp1vb290bFjRxw4cKBB7SGkXmx9yUxIc5Wfn88AsFGjRhmtN3LkSAaAPXz4sNY6K1euZABYfn6+0W2p1WqmVCpZu3bt2OzZs3WWLVy4kAFgn3/+uU55586dGQC2Z8+e6jKVSsVatmzJhg0bVl0WHx/PWrdurbfPqu3WRd++fdnJkyfrVNeUw4cPMwBs9erVjDHGFAoFc3NzY1FRUQbrx8XFMS8vL172TYgxdMVKiI0xxgBA73ZqTbm5ueA4Dh4eHjrlarUay5YtQ3BwMOzs7CASiWBnZ4fMzExcu3bN4LYGDhyo831QUBA4jkNsbGx1mUgkQtu2bXHv3r2GNsug3r17o3v37rxsa8uWLRCLxRg7diwAQCKRIC4uDmfPnsXVq1f16nt6eqKgoABqtZqX/RNSG0qshFiIh4cHHBwccOfOHaP17t69C3t7e7i7u9da5+nTpxCLxRAKhTrlH3zwAT755BMMHToU+/fvx7lz53DhwgWEh4fj6dOnBrfl5uam872dnR0cHBwglUr1yhUKhdHY62vOnDkQi8Vmb+fhw4fYt28f+vTpAzs7OxQXF6O4uBhvv/02AOCbb77RW0cqlYIxxnubCHkePSCCEAsRCoV44403cOjQIeTk5Bj8nDUnJweXLl3Sm37yPA8PDyiVSpSVlcHR0bG6PDk5GePGjcOyZct06j969AguLi68tKOKVCpFRUWFXvmjR4943U9dbNu2DSqVCocOHYKrq6ve8h07dmDFihWQSCTVZUVFRZBIJHWeI0tIQ9EVKyEWNG/ePDDGMG3aNGg0Gp1lGo0GU6dOhUajwcyZM41up2PHjgCAW7du6ZRzHKeTPADgwIEDuH//Pg/R6woMDERBQQEePHhQXaZUKvHTTz/xvi9Ttm7dioCAAJw4cULva+HChSgsLERqaqrOOrdv30ZwcLDVYyUvHrpiJcSCevTogTVr1mDmzJno2bMnZsyYgVatWiErKwvr16/H2bNnkZSUhJiYGKPbef311wFUPsEpLCysunzgwIHYtm0bOnbsiLCwMFy6dAmfffZZraOQzTFy5EgsWLAAo0aNwl//+lcoFAqsXbtW7w8GS/v5559x48YNLFq0qLpfaurWrRvWrFmDLVu2YNSoUQAqRxCfP38eCQkJVo2VvKBsPHiKkBfCmTNn2Ntvv828vLyYQCBgAJhUKmUHDhyo8zZee+011r9/f52yx48fs4SEBObp6ckcHBxYz5492alTp1h0dDSLjo7WqVs1evf50cfx8fHM0dFRb3/R0dEsJCREp+zgwYOsc+fOzN7enrVp04atW7euXqOC+TB27FgmFApZTk5OrXWmT5/OOI5jN2/eZIwxduzYMQaAXbp0yVphkhcYx9izIYmEEKv5xz/+gfj4eMyZMwcrV66s0zq7d+/GyJEjce/ePfj5+Vk4wuZl7NixuH37Nk6fPm3rUMgLgBIrITaycuVKzJs3D4sWLcKCBQtM1meMoXv37ujatSvWrVtnhQibh1u3biEoKAjHjx9Hz549bR0OeQFQYiWkCcnIyMC+ffswb968Jv0gfms6ceIEMjMzMXnyZFuHQl4QlFgJIYQQHtGfvIQQQgiPKLESQgghPKLESgghhPCIEishhBDCI0qshBBCCI8osRJCCCE8osRKCCGE8IgSKyGEEMIjSqyEEEIIjyixEkIIITz6X2L0zks8NoTmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1, figsize=(5, 7))\n", "\n", "ax.plot(es_1d_coord, es_energies, color=blue, linestyle='', marker='s', markersize=5, label='ES energy')\n", "ax.plot(gs_1d_coord, gs_energies, color=red, linestyle='', marker='o', markersize=5, label='GS energy')\n", "\n", "ax.plot(es_1d_coord, es_fit_energies, color=blue, linestyle='--', linewidth=1.0, marker='', label='ES fit')\n", "ax.plot(gs_1d_coord, gs_fit_energies, color=red, linestyle='--', linewidth=1.0, marker='', label='GS fit')\n", "\n", "ax.text(x=0.46, y=0.4, s='GS phonon: %.2f meV\\nGS HRF: %.2f' % (gs_phonon, gs_hrf), color=red, transform=ax.transAxes)\n", "ax.text(x=0.46, y=0.6, s='ES phonon: %.2f meV\\nES HRF: %.2f' % (es_phonon, es_hrf), color=blue, transform=ax.transAxes)\n", "\n", "ax.axvline(x=0.0, color='gray', linestyle='--', linewidth=1)\n", "ax.axvline(x=delta_q, color='gray', linestyle='--', linewidth=1)\n", "\n", "ax.legend(fontsize=12, loc='center left', edgecolor='black')\n", "ax.set_xlim((-0.2, 0.9))\n", "plt.xlabel('Q (amu$^{1/2}$ Å)')\n", "plt.ylabel('Total Energy (eV)')\n", "plt.tick_params(direction='in')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Therefore, we obtain an effective phonon energy of $59.09$ meV for the ground state and $64.31$ meV for the excited state." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Computation of photoluminescence and absorption spectra" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the mass-weighted atomic displacement (`delta_q`) and the effective phonon energies of the ground and excited states (`gs_phonon` and `es_phonon`), we can use the `config_coord_1d_solver` from `PyPL` to compute both the PL and absorption spectra.\n", "\n", "There are a few parameters that need to be defined." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# order (must be large enough to converge the spectra and should be tested for each system)\n", "order_es = 50\n", "order_gs = 60\n", "\n", "# energy range for plot (meV)\n", "ene_range = [-200, 1200]\n", "\n", "# resolution\n", "resol = 1401\n", "\n", "# temperature (K)\n", "temp = 5\n", "\n", "# broadening (empirically set to best match experiment)\n", "gamma = 0.3\n", "sigma = [8, 25]\n", "\n", "# ZPL (meV)\n", "ezpl = 1945" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The PL spectrum is obtained by first evaluating the Franck–Condon integrals, followed by summing over all possible initial and final vibrational states." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integral check: 1.010097299613035\n" ] } ], "source": [ "ccd_pl = config_coord_1d_solver(es_phonon, gs_phonon, delta_q)\n", "\n", "ccd_pl.compute_franck_condon_integrals(ni=order_es, nf=order_gs)\n", "ccd_pl.bulid_fc_lsp(eneaxis=np.linspace(ene_range[0], ene_range[1], resol),\n", " temp=temp, sigma=sigma, zpl_lorentzian=True, gamma=gamma)\n", "pl_spectrum = ccd_pl.compute_spectrum(tdm=1.0, zpl=ezpl, spectrum_type='PL')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The absorption spectrum is evaluated in the same manner, with the important distinction that the initial state corresponds to the ground state and the final state to the excited state, i.e., the opposite of the PL process." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Integral check: 1.0100958192183735\n" ] } ], "source": [ "ccd_abs = config_coord_1d_solver(gs_phonon, es_phonon, delta_q)\n", "\n", "ccd_abs.compute_franck_condon_integrals(ni=order_gs, nf=order_es)\n", "ccd_abs.bulid_fc_lsp(eneaxis=np.linspace(ene_range[0], ene_range[1], resol),\n", " temp=temp, sigma=sigma, zpl_lorentzian=True, gamma=gamma)\n", "\n", "abs_spectrum = ccd_abs.compute_spectrum(tdm=1.0, zpl=ezpl, spectrum_type='Abs')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAF5CAYAAAD9DVumAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwItJREFUeJzs3Xd8VFX6x/HPnZqEFAghhIQESOi9K4gICIgUURS7rm392cuuvaBr7+va166rItIVAVEEkSK99x5ICIEQEkiZen9/hEQQCAnM5J4787xfrygkkzsPfLk388w59xxN13UdIYQQQgghhBBCGMZidAFCCCGEEEIIIUS4k+ZcCCGEEEIIIYQwmDTnQgghhBBCCCGEwaQ5F0IIIYQQQgghDCbNuRBCCCGEEEIIYTBpzoUQQgghhBBCCINJcy6EEEIIIYQQQhhMmnMhhBBCCCGEEMJg0pwLIYQQQgghhBAGU6Y5nzt3LoMHD6ZOnTpERkbSrFkznn32WaPLEkIIIYQQQgghgs5mdAEA33zzDddddx2XX345X375JdHR0WzdupXs7GyjSxNCCCGEEEIIIYJO03VdN7KArKwsWrRowfXXX897771nZClCCCGEEEIIIYQhDJ/W/vHHH1NUVMTDDz9sdClCCCGEEEIIIYQhDG/O58yZQ3x8PBs2bKBjx47YbDYSExO57bbbKCwsNLo8IYQQQgghhBAi6Ayf1t6yZUt27tyJ3W7n0UcfpUePHixevJinnnqKzp078/vvv6Np2jHf4/f72bFjB3a7/ZivOZ1OnE5nTf8RhBBCCCGEEEKEGJfLhcvlqvi9rut4PB4aN26MxRL4cW7DF4Tz+/2Ulpby1FNP8cgjjwDQp08fHA4H9913HzNnzqR///7HfM+OHTvIyMgwolwhhBBCCCGEEGFs69atpKenB/y4hjfndevWZfPmzVxwwQXHfP7CCy/kvvvuY9myZcc153a7HYBFixbRoEGDis/LyLnxCgsLSU1NZdeuXcTGxhpdjvgLyUddko26zJrNY88vxhIZxXpvEpfGruXq23obXVJQmDWfcCDZqEuyUZvko46/jpzv2bOH7t27V/SjgWZ4c96+fXv++OOP4z5fPtv+RNMFyqeyN2jQgIYNGwa3QHFaYmNj5WKiMMlHXZKNusyWjdNZC0tELezeGCIjapmq9tNhtnzCiWSjLslGbZKPuv5623WgGL4g3KWXXgrAtGnTjvn81KlTATj77LNrvCYhhBBCCCGEEKImGT5yPnDgQIYNG8YzzzyD3+/n7LPPZsmSJfzrX/9i6NCh9OrVy+gShRBCCNPRT/JrIYQQQqjJ8JFzgDFjxnDffffx4YcfcuGFF/L+++9z//33M27cuBM+vvy+crm/XD1Op5MRI0ZINoqSfNQl2ajLzNlo6Ggh3pmbOZ9QJ9moS7JRm+SjrmD3oYaPnANERkby0ksv8dJLL1Xp8dKcq8vpdHLvvfdKNoqSfNQl2ahLslGb5KMuyUZdko3aJB91hUVzLkJL27ZtjS5BVELyUZdkoy7TZxPio+emzyeESTbqkmzUdrJ8Dh06xJ49e/D7/TVcUeiyWCzUrVuXOnXqBGXv8uqQ5lwE3E8//cRVV11ldBniJCQfdUk26jJvNsFZTVY15s0n9Ek26pJs1PbXfPx+Py+++CITJ040sKrQVqdOHe68804uuugiw5p0ac6FEEKIkPRnYx7iA+dCCBHyXnzxRSZNmsQ999xDp06dgrbPdjjy+Xzk5eXx888/89xzz7F27Voef/xxQ2qR5lwE3FlnnWV0CaISko+6JBt1mTUbDR0tDFpzs+YTDiQbdUk2ajs6n8LCQiZOnMg999zD9ddfb2BVoa13796kp6fz4Ycfcvfddxuyx7wSq7WL0HL48GGjSxCVkHzUJdmoS7JRm+SjLslGXZKN2o7OJycnB4BOnToZVU7Y6N69Ox6Pp+LvvKZJcy4Cbu3atUaXICoh+ahLslGXZKM2yUddko26JBu1HZ1P+eJvMpU9+KxWK4BhC+5Jcy6EEEIIIYQQQhhMmnMRcJdddpnRJYhKSD7qkmzUZcZs9IoF4XRCfdV2M+YTLiQbdUk2apN8wpM05yLgZsyYYXQJohKSj7okG3WZMxv9SE+uEerrtZszn/Ag2ahLslFbOOXz+eefo2laxYfNZqNhw4bceOONZGVlATB79mw0TWPcuHEGVxtcslq7CLjCwkKjSxCVkHzUJdmoS7JRm+SjLslGXZKN2sIxn88++4yWLVtSUlLCnDlzePHFF/ntt99YvXq10aXVGGnORcDVr1/f6BJEJSQfdUk26pJs1Cb5qEuyUZdko7ZwzKdt27Z07doVgL59++Lz+Xj22WeZNGkSKSkpBldXM2Rauwi48pNKqEnyUZdkoy7JRm2Sj7okG3VJNmqTfODss88GYOfOnQZXUnOkORcB9+OPPxpdgqiE5KMuyUZd5sxGQwM09BC/49ys+YQHyUZdko3aJB/YsmULAPXq1TO4kpoj09qFEEIIIYQQwoT8paW4d+0wugwAHKmNsUREnPb3+3w+vF4vpaWl/Pbbbzz33HPExMRw0UUXsX79+gBWqi5pzkXAdenSxegSRCUkH3VJNuqSbNQm+ahLslGXZKO2qubj3rWD3XfcENxiqqjhe58T0azlaX9/+TT2cu3ateP999+nfv360pwLcbo8Ho/RJYhKSD7qkmzUZcps9JP8OgSZMp8wIdmoS7JRW1XzcaQ2puF7nwe3mCpypDY+o+//8ssvadWqFTabjfr169OgQYPAFGYi0pyLgFu1ahVt2rQxugxxEpKPuiQbdZkxG1076tdoJ39gCDBjPuFCslGXZKO2quZjiYg4o9FqlbRq1SrsF8KTBeGEEEKIEFW+IJwQQggh1Ccj5yLgLr74YqNLEJWQfNQl2ahLslGb5KMuyUZdko3aJJ8T++OPP074+fPOOy8kVnWXkXMRcHPmzDG6BFEJyUddko26JBu1ST7qkmzUJdmoTfI5sddff52RI0ce97F27VqjSwsIGTkXAXfgwAGjSxCVkHzUJdmoS7JRm+SjLslGXZKN2sIpnxtuuIEbbrih0sf06dMHXQ/927Rk5FwEXN26dY0uQVRC8lGXZKMuM2ZTtghc6L+QAXPmEy4kG3VJNmqTfMKTNOci4Hr16mV0CaISko+6JBt1STZqk3zUJdmoS7JRm+QTnqQ5FwE3efJko0sQlZB81CXZqMuc2YTHqDmYNZ/wINmoS7JRm+QTnqQ5F0IIIYQQQgghDCbNuQi4jh07Gl2CqITkoy7JRl2SjdokH3VJNuqSbNQm+YQnac5FwFks8s9KZZKPuiQbdZkzGw0N0NBDfoK7OfMJD5KNuiQbtUk+4UlSFwG3bNkyo0sQlZB81CXZqEuyUZvkoy7JRl2Sjdokn/AkzbkQQgghhBBCCGEwac5FwA0dOtToEkQlJB91STbqkmzUJvmoS7JRl2SjNsknPElzLgJu0aJFRpcgKiH5qEuyUZcpszn6RnM9tO86N2U+YUKyUZdkozbJJzxJcy4CLjc31+gSRCUkH3VJNuoyYzZ62WpwZb8u/0WIMmM+4UKyUZdko7ZwzOett95C0zTatm173Nd27NiBpmm89tprBlRWc6Q5FwEXFxdndAmiEpKPuiQbdUk2apN81CXZqEuyUVs45vPpp58CsHbtWhYuXGhwNcaQ5lwE3Pnnn290CaISko+6JBt1STZqk3zUJdmoS7JRW7jls2TJElauXMmQIUMA+OSTTwyuyBjSnIuAmzBhgtEliEpIPuqSbNQl2ahN8lGXZKMuyUZt4ZZPeTP+0ksv0bNnT7799luKi4uPe5zf7+f5558nLS2NiIgIunbtysyZM495zL59+7j11ltJTU3F6XRSr149zjnnHH755Zca+bOcCWnOhRBCiJCkoaGjhfhicEIIIcytpKSE0aNH061bN9q2bctNN93EoUOHGDt27HGPfeedd5g+fTpvvvkmX331FRaLhQsvvJAFCxZUPOa6665j0qRJjBo1ihkzZvDxxx/Tv39/8vLyavKPdVpsRhcgQs+JFnEQ6pB81CXZqMu82WiE+FpwgJnzCX2SjbokG7VVNZ9Sj05mnj/I1VRNWl0LEfbq/9AZN24cBQUF3HzzzQBcccUV3HfffXzyySf87W9/O+axPp+Pn3/+mYiICAAuuOACGjduzKhRo/j5558BmDdvHrfccgt///vfK75v+PDhp/vHqlHSnIuAi4qKMroEUQnJR12SjbokG7VJPuqSbNQl2aitqvlk5vm5/dPSIFdTNe/fFEHzJGu1v++TTz4hMjKSK6+8EoDo6GhGjhzJZ599xubNm2nWrFnFY0eMGFHRmAPExMQwbNgwRo8ejc/nw2q10r17dz7//HPq1q1L//796dKlC3a7/cz/gDXA8OZ89uzZ9O3b94RfW7BgAWeffXYNVyTO1KJFi8jIyDC6DHESko+6JBt1mTGbo2ezh/rEdjPmEy4kG3VJNmqraj5pdS28f1PEKR9XE9LqVv+O6S1btjBnzhwuvfRSdF3n4MGDAFx22WV89tlnfPrpp7z44osVj09KSjruGElJSbjdbg4fPkxcXBxjxozhueee4+OPP+bJJ58kOjqaSy65hFdeeeWE368Sw5vzci+88MJxTbpMtxFCCCGEEEKIE4uwa6c1Wq2KTz/9FF3XGTduHOPGjTvu61988QXPPfdcxe9zcnKOe0xOTg4Oh4Po6GgAEhISePPNN3nzzTfJzMzk+++/55FHHiE3N5fp06cH7w8TAMo0582aNZNR8hBx4YUXGl2CqITkoy7JRl2mzEYLnwXhTJlPmJBs1CXZqC0c8vH5fHzxxRdkZGTw8ccfH/f1KVOm8PrrrzNt2rSKQdsJEybw6quvVkxtP3ToED/88APnnnsuVuvxb1KkpaVx1113MXPmTObNmxfcP1AAyGrtIuBWrlxpdAmiEpKPuiQbdUk2apN81CXZqEuyUVs45DNt2jSys7O59dZb6dOnz3EfjzzyCE6n85g9z61WKwMGDGDixImMHz+e888/n8LCQv71r38BUFBQQOfOnXnttdeYMmUKv/32G6+99hrTp09nwIABRv1Rq0yZ5vzOO+/EZrMRGxvLBRdcwNy5c40uSZym7Oxso0sQlZB81CXZqEuyUZvkoy7JRl2SjdrCIZ9PPvkEh8PBjTfeeMKvJyQkcMkllzBlyhT27t0LwF133cWAAQO45557uPrqq/F6vfz444+cc845AERERHDWWWfxv//9j2uuuYYLL7yQjz/+mIcffpiPPvqoxv5sp8vwae1xcXHce++99OnTh7p167JlyxZeffVV+vTpw48//sgFF1xw0u8tLCw85vdOpxOn0xnsksUplN/vIdQk+ahLslGXubMJ/b3UzJ1PaJNs1CXZqC0c8pk4ceIpHzN69GhGjx4NgH7UbVqjRo064eOdTifvv/9+YAoEXC4XLper4vd/7T8DTdN19W5GO3jwIO3atSM+Pv6EUzoKCwuJi4s77vMjRozgjjvuoHv37kyZMgWAzp074/f7WbFiBVC2x93cuXPJy8sjPj6e3r17M2nSJADat2+P3W5n6dKlAAwZMoQlS5awd+9eYmNjGThwYMVCBW3atCE6OpqFCxcCZXvsrVmzhqysLGrVqsXQoUMZM2YMAC1atCAhIaHiPof+/fuzadMmMjMzcTqdjBgxgjFjxuD3+8nIyCAlJYU5c+YA0KdPHzIzM9m2bRs2m42RI0cyfvx43G43jRo1IiMjg19//RWAXr16kZuby6ZNmwC46qqrmDx5MsXFxTRs2JDWrVszY8YMAHr06EFBQQHr1q0DYOTIkUyfPp1Dhw6RlJRE586dmTp1KgDdunWjtLSU1atXA3DJJZcwe/Zs8vPzSUhIoEePHvzwww8AdOrUCb/fX5HbsGHDWLBgAfv376dOnTr06dOn4kRs164dERERLF68GIDBgwezbNkycnJyiImJYdCgQYwdOxaA1q1bExcXx4IFCwAYOHAg69atY/fu3URFRTF8+PCKE7d58+YkJiZWzL7o168fW7duZefOnTgcDi699FLGjh2L1+slPT2dtLQ0Zs+eDUDv3r3Jyspi69atWCwWrrjiCiZMmIDL5SItLY3mzZvzyy+/AHDOOeewf/9+Nm7cCJTtyThlyhSKiopISUmhbdu2/PTTTwCcddZZHD58mLVr1wJlK1DOmDGDwsJC6tevT9euXfnxxx8B6NKlCx6Ph1WrVgFw8cUXM2fOHA4cOEDdunXp1asXkydPBqBjx45YLBaWLVsGwNChQ1m0aBG5ubnExcVx/vnnM2HCBKBsgcWoqCgWLlyIpmlceOGFrFy5kuzsbKKjoxk8eDDfffcdAC1btiQ+Pp758+cDMGDAADZs2MCuXbuIjIzk4osv5ttvv0XXdZo1a0ZSUhK///47AH379mXHjh1s374du93OZZddxrhx4/B4PDRp0oTGjRsza9YsAM4991xycnLYvHkzmqZx5ZVXMmnSJEpKSkhNTaVly5YVe1b27NmTAwcOsGHDBgAuv/xypk6dyuHDh0lOTqZDhw5MmzYNgO7du1NcXMyaNWsqrg0zZ86koKCAxMREZa8Rc+fORdO0kL9GACxfvtxU14hZs2ahaZqprhG/rWpCbC0Lm/wN6VY6n/R2nipdIxYtWgRgqmuEruucc845IX+NMOPrCF3X6d69e8hfI8z4OkLXdTp16lTt1xFmvEaA+V5HtGrVitjYWBYuXEhWVhbffPMNH330EY0bN8ZqtRIXF8eBAweAstFim83G4cOHAYiNja1oKi0WC3Xq1OHAgQPouk5ERAR2u51Dhw4BZVuRud1uXC4XmqYRHx9Pfn4+fr+/YuCzvCGNiYnB4/FQWlq2dVvdunU5ePAgPp8Ph8NBZGQkBQUFQNmbCz6fj5KSEgDi4+MpKCjA5/Nht9uJioqqeGytWrXQdZ3i4mIA6tSpw6FDh/B6vdjtdmrVqlWxinv5FnPlj61duzZFRUV4PB5sNhsxMTHk5+dXPFbTNIqKioCyQeHi4mI8Hs9xf4eRkZFYrVaWL1/OjTfeyGeffYbH4+HNN9+sOAeOVlBQQGxs7HGfP1NKNucAt99+Ox988AHFxcVERkYe87Xy5nzXrl3H/KXIyLkaRo8ezVVXXWV0GeIkJB91STbqMmM2dz25lDoxVtaUJjIoejP/94/zjC4paMyYT7iQbNQl2ajt6Hw2bNjAtddey1dffUXLli0Nriy0/fXv+kQj56mpqUFrzg2f1n4y5e8ZaNrJp+PFxsYG5S9FCCGEEEIIIUR4q+nBX2UWhDtafn4+U6ZMoWPHjhXL5AvzkHf01Cb5qEuyUZdkozbJR12SjbokG7VJPuHJ8JHzq6++mrS0NLp27UpCQgKbN2/m9ddfZ+/evXz++edGlydOQ3x8vNEliEpIPuqSbNQl2ahN8lGXZKMuyUZtkk94MnzkvH379vz000/ccsst9O/fn8cff5zWrVszf/58+vfvb3R54jSUL/4h1CT5qEuyUZeZs9FQcmmZgDJzPqFOslGXZKO2o/OxWMpaNp/PZ1Q5YcPv9wN//p3XNMNHzh955BEeeeQRo8sQQgghQop+1JItod+eCyFE6Kpbty4AeXl5BlcS+sr3l69du7Yhz2/4yLkIPQMGDDC6BFEJyUddko26JBu1ST7qkmzUJdmo7eh86tSpQ506dSq2hRPB4ff7+eGHHyq2UzSC4SPnIvRs2LCBXr16GV2GOAnJR12SjbokG7VJPuqSbNQl2ajt6HwsFgt33nknzz33HOnp6XTv3h2r1WpwhaHD7/eTnZ3NDz/8wPz583nhhRcMq0WacxFwu3btMroEUQnJR12SjbrMn01oT2w3fz6hS7JRl2Sjtr/mc9FFF7F27Vo+/PBD3n33XYOqCm3NmzfnhRdeMHRWiTTnIuAiIyONLkFUQvJRl2SjLrNmo6GjHflVKDNrPuFAslGXZKO2v+ZjsVh4/PHHufvuu8nJyalYuEycOYvFQu3atQ2byn40Tdd1072dXlhYSFxcHAUFBcTGxhpdjhBCCKGcO0cto260xtrSRAZEb+G2f5xndElCCCGEqQW7D5UF4UTAffvtt0aXICoh+ahLslGXZKM2yUddko26JBu1ST7hSZpzEXAmnIwRViQfdUk26pJs1Cb5qEuyUZdkozbJJzxJcy4CrlmzZkaXICoh+ahLslGXabPRQvte83KmzScMSDbqkmzUJvmEJ2nORcAlJSUZXYKohOSjLslGXWbMRqdsQTjQQ3ytdnPmEy4kG3VJNmqTfMKTNOci4H7//XejSxCVkHzUJdmoy/TZhHh3bvp8Qphkoy7JRm2ST3iS5lwIIYQQQgghhDCYNOci4Pr27Wt0CaISko+6JBt1STZqk3zUJdmoS7JRm+QTnqQ5FwG3Y8cOo0sQlZB81CXZqMvM2YTDknBmzifUSTbqkmzUJvmEJ2nORcBt377d6BJEJSQfdUk26jJnNn+25SF+y7lJ8wkPko26JBu1ST7hSZpzEXB2u93oEkQlJB91STbqkmzUJvmoS7JRl2SjNsknPGm6CXe4LywsJC4ujoKCAmJjY40uRwghhFDOHaOWUy8G1pbUo1+trdzxz/OMLkkIIYQwtWD3oTJyLgJu3LhxRpcgKiH5qCvY2fgKDuLNz8OE78kaTs4btUk+6pJs1CXZqE3yCU82owsQocfj8RhdgqiE5KOuYGVTunkD+999g9K1qwBwNMkg4fb7ierUNSjPF4pMed7o5Xedh/6bMabMJ0xINuqSbNQm+YQnGTkXAdekSROjSxCVkHzUFYxsiv6Yy+57/46/pJj6Dz9F0pMvYImOIfuRezn064yAP1+oMuN5o4fDMu1HmDGfcCHZqEuyUZvkE55k5FwEXOPGjY0uQVRC8lFXoLMp3biOPc88Sq3uPUl67Fk0hwOAWuf0JvfV58h97TnsKalEtGgV0OcNRXLeqE3yUZdkoy7JRm2ST3iSkXMRcLNmzTK6BFEJyUddgczGX1REzjOP4cxofkxjDqBZbST+4zEcTTLY+8q/0L3egD1vqJLzRm2Sj7okG3VJNmqTfMKTNOdCCBGC8j59H19hAUmPH9uYl9McDhL/8Rie3ZkcnPSdARUKIYQQQoijSXMuAu7cc881ugRRCclHXYHKxrV1MwU/jKfujf+HPSn5pI9zZjQj9sLh5I/+An9JSUCeO1SZ9bzRKF8ULrSZNZ9wINmoS7JRm+QTnqQ5FwGXk5NjdAmiEpKPugKVzf6P3sGekkrcRZed8rF1rroef9FhCqdOCshzhyoznjf6UW15qK/XbsZ8woVkoy7JRm2ST3iS5lwE3ObNm40uQVRC8lFXILIpWbuKkqULqXvTbWi2U6/5aa/fgJh+F3Bw4hh0n++Mnz9Umf68CfHu3PT5hDDJRl2Sjdokn/AkzbkIOE0Lh0mU5iX5qCsQ2Rwc+zX21EbUOqdPlb8nbtgIvHtzKF668IyfP1TJeaM2yUddko26JBu1ST7hSdN13XTvpxcWFhIXF0dBQQGxsbFGlyOEEEpwZ+4g85arSLz/UWIvvKjK36frOrtuux57UgMa/OuVIFYoatJto1bQIMbP2pIEzovazp0PnGd0SUIIIYSpBbsPlZFzEXCTJk0yugRRCclHXWeazcFx32CtE0/M+YOq9X2aphE7aChFi+bjKyw4oxpCldnPG9O9C19NZs8nlEk26pJs1Cb5hCdpzkXAlciqz0qTfNR1Jtl48/Mo/GUatS+54oRbp51K9Hn9we/n8NzZp11DKDPteRMm0yJNm08YkGzUJdmoTfIJT9Kci4BLTU01ugRRCclHXWeSzaGffkTTLMQOHn5a32+Lr0tkh84cnv3zadcQyuS8UZvkoy7JRl2Sjdokn/AkzbkIuJYtWxpdgqiE5KOu081G9/spnPY90ef2xRobd9rPH92rDyWrluMrOnzaxwhVct6oTfJRl2SjLslGbZJPeJLmXATczz/LyJvKJB91nW42JSuX4cneTeyQi8/o+aO69wSfj5Kli87oOKHIrOeNFvJ3m5cxaz7hQLJRl2SjNsknPElzLoQQJlc4dTL21EZEtO1wRsexJyXjaNSEooXzAlSZMJLO0febh8e950IIIYSZSXMuAq5nz55GlyAqIfmo63Sy8RUc5PC82cQOHh6QPVGjzupJ8aL56H7/GR8rlMh5ozbJR12SjbokG7VJPuFJmnMRcAcOHDC6BFEJyUddp5PNodm/gN9PbP8LA1JDre7n4DuYj2vzxoAcL1TIeaM2yUddko26JBu1ST7hSZpzEXAbNmwwugRRCclHXaeTzaFfphHVrQfW2nUCUkNEm/ZYakVTvEimth9Nzhu1ST7qkmzUJdmoTfIJT9KcCyGESbl3Z+LasJaY/oMCdkzNZiOq61kULZwfsGMK42iEz6JwQgghhNlpuq6b7qd2YWEhcXFxFBQUEBsba3Q54i98Ph9Wq9XoMsRJSD7qqm42eV9+RMH4b2n83Y9YnBEBq6Ng6mT2/edl0if8jKVWrYAd18zMeN7cOmolqbE+1hTXpVfUTu5+oLfRJQWNGfMJF5KNuiQbtUk+agp2Hyoj5yLgpk6danQJohKSj7qqk42u6xye+RO1evcLaGMOENm+E/j9lKxdGdDjmpmcN2qTfNQl2ahLslGb5BOelGvOP/74YzRNIzo62uhSxGk6fPiw0SWISkg+6qpONqXr1+DJ3k3M+YGb0l7OnpKKNb4uJatXBPzYZmX688Z0c+Sqx/T5hDDJRl2Sjdokn/CkVHOelZXFAw88QHJystGliDMg+alN8lFXdbI5/Mt0bPUSy0a5A0zTNCLbdaR01fKAH9uszHzehMMO52bOJ9RJNuqSbNQm+YQnpZrz2267jd69ezNgwACjSxFnoEOHDkaXICoh+airqtnoHg+HZv9MdN+BaJbgXMYj2nWidNN6/KWlQTm+2ch5ozbJR12SjbokG7VJPuGp2q/qZs+ezYMPPkjPnj1p1KgRiYmJtG7dmssuu4z33nuPffv2nVYhX331Fb/99hvvvffeaX2/UMe0adOMLkFUQvJRV1WzKV68AP+hwoCu0v5Xke07gddL6Ya1QXsOMzHneaNVjJqH+Kx2k+YTHiQbdUk2apN8wpOtqg/84osveOmll9i4cSPR0dF06NCBrl27EhERwYEDB1i9ejUTJkzgH//4B5dffjnPPvssjRo1qtKxc3Nzue+++3jppZdo2LBhlYsvLCw85vdOpxOn01nl7xdChA9/SQmla1fhztqF7nFjq1uPiNZtsddvYHRp1Xbo159wpDfF2aRp0J7D0agJlphYSlYtI6pjl6A9jxBCCCGEqlwuFy6Xq+L3f+0/A61KzXmXLl3Yvn071157LV9++SVdunTBcoKplAcOHGDSpEl8/vnntGrVii+//JLLLrvslMe/4447aNGiBbfffnu1ik9NTT3m9yNGjOCOO+6ge/fuTJkyBYDOnTvj9/tZsWIFAMOHD2fu3Lnk5eURHx9P7969mTRpEgDt27fHbrezdOlSAIYMGcKSJUvYu3cvsbGxDBw4kHHjxgHQpk0boqOjWbhwIQAXXHABa9asISsri1q1ajF06FDGjBkDQIsWLUhISGDevHkA9O/fn02bNpGZmYnT6WTEiBGMGTMGv99PRkYGKSkpzJkzB4A+ffqQmZnJtm3bsNlsjBw5kvHjx+N2u2nUqBEZGRn8+uuvAPTq1Yvc3Fw2bdoEwFVXXcXkyZMpLi6mYcOGtG7dmhkzZgDQo0cPCgoKWLduHQAjR45k+vTpHDp0iKSkJDp37lyxSmS3bt0oLS1l9erVAFxyySXMnj2b/Px8EhIS6NGjBz/88AMAnTp1okGDBowePRqAYcOGsWDBAvbv30+dOnXo06cPEydOBKBdu3ZERESwePFiAAYPHsyyZcvIyckhJiaGQYMGMXbsWABat25NXFwcCxYsAGDgwIGsW7eO3bt3ExUVxfDhwyues3nz5iQmJjJ37lwA+vXrx9atW9m5cycOh4NLL72UsWPH4vV6SU9PJy0tjdmzZwPQu3dvsrKy2Lp1KxaLhSuuuIIJEybgcrlIS0ujefPm/PLLLwCcc8457N+/n40bNwJwxRVXMGXKFIqKikhJSaFt27b89NNPAJx11lkcPnyYtWvLRiEvu+wyZsyYQWFhIfXr16dr1678+OOPQNn55vF4WLVqFQAXX3wxc+bM4cCBA9StW5devXoxefJkADp27IjFYmHZsmUADB06lEWLFpGbm0tcXBznn38+EyZMAKBt27ZERUVRVFTE6NGjufDCC1m5ciXZ2dlER0czePBgvvvuOwBatmxJfHw88+eX7XU9YMAANmzYwK5du4iMjOTiiy/m22+/Rdd1mjVrRlJSEr///jsAffv2ZceOHWzfvh273c5ll13GuHHj8Hg8NGnShMaNGzNr1iwAzj33XHJycti8eTOapnHllVcyadIkSkpKSE1NpWXLlvz8888A9OzZkwMHDrBhwwYALr/8cqZOncrhw4dJTk6mQ4cOFe8yd+/eneLiYtasWYPjUAE9C/Zx6NefsHi96BYrFocd/ch0bT29Kb7+Q1ju0UHTDL1GlGdT6TUiJZn4+b+zq2N35o0eHdRrhDutCTt/+YkZ9uiAXiMAli9fbqprRHk2ZrpGeH0tKXW70HWdA/kHGD16dJWuEYsWLQIw1TWiqKiInTt3ntY1AspeP8ycOZOCggISExPldUQAX0cUFRWxZcuWkL9GmPF1RFFREevXr6/26wgzXiPg9F9HGHWNSEhIYNu2bSF/jQC1X0e8+eabFedATajSPuejRo3igQceqNZebuUXgYsvvrjSx40fP56rr76a5cuX07p1awBuuOEGxo0bd9JVCsv3l9u1a9cxNcnIuRpWr15Nu3btjC5DnES45KPrOgWTx5L34TtYoqOJG34Z0b36Yk9thGax4CssoHjZIgq+n0Dp6uXUOuc8Eh94Amt0jGE1VyWbwp+mkPv68zT+ejK2eolBrSd/3Dcc+Py/pE+aiWar8kSrkGTG8+bWUatIi/OypiienpGZ3PNg6O5zbsZ8woVkoy7JRm2SjxpONHKemppq7D7nzzzzTLWfvHfv3qdszA8fPsydd97J3XffTXJyMgcPHuTgwYO43W4ADh48SFFR0Um/PzY29pgPaczVUP4uo1BTOOTjLypiz5MPsP/dN4gdMpxGX4wn/pqbcDRqUrGAmjU2jpg+A0h5/T2SRr1Iyarl7LrjBlxbNhlWd1WyOTRzOpHtOwW9MQeIaNkG3eXCvWNb0J9LdWY8b4595z2012w3Yz7hQrJRl2SjNslHDU6n87ieM5gMXa19//797N27l9dff506depUfIwePZqioiLq1KnDNddcY2SJQgiT8RUWkPXQXZSuWUmD596g3p3/xBIZedLHa5pG9Ll9SX33c6zR0WT983ZKN66rwYqrzrt/HyUrlgZlb/MTcTZrARarLAoXAvSQXxJOCCGEML8qTWuvql27dqHrOmlpaVV6fGlpKX/88cdxn3/ppZf47bffmDZtGgkJCbRt2/aYr5dPaw/WdAJxZlwul8xiUFgo5+MrOEjWA3fgO5hP8ov/wdm0ebW+319cRPaj9+HO3EHyK28T0axlkCo9sVNlkz/uG/I+fZ8m302tsen3u26/HkfTFtT/5+M18nyqMuN58/dRq2h0ZFp7j8hM7g3hae1mzCdcSDbqkmzUJvmoKdh9aEBHztPT00lPT6/y4yMiIujTp89xH0lJSVitVvr06XNcYy7UN3PmTKNLEJUI1Xz8rlL2jHoQ38F8Ul5/v9qNOYAlqhbJL7yJvWEqex67H8/ePUGo9OROlc3hmdOpdXavGr0v3tmyDS4ZOQ/Z8yZUSD7qkmzUJdmoTfIJTwFtzq+//nquu+66QB5SmFBBQYHRJYhKhGI+ut/P3peexrV1Ew2eex1HWuPTPpalVi2Sn30dLSKCPU89jL+kJHCFnkJl2bh3bse1ZRMx/S6osXoAIlq0wb1zO/7ik6//EQ7Met5ogBYGU9rNmk84kGzUJdmoTfIJTwFtzj/55BM+++yzMz7O559/ftKV2oX6EhODv1CVOH2hmE/+159SNO83kh57logWrc/4eNbadWjwr1fwZO0i943nCeDdP5WqLJtDM6djiY6hVveeNVJLOWfL1qDrlG7aUKPPqxoznjd6iC8CdzQz5hMuJBt1STZqk3zCU7Wb8zlz5py0cS4qKqrYM0+Er+7duxtdgqhEqOVTvHQhB/73CfHX3UKtnoG7p9aZ3oz6Dz7J4dm/UDjt+4AdtzIny0bXdQ7NmkF0735oDkeN1FLOkdoILSoq7Ke2h9p5E2okH3VJNuqSbNQm+YSnajfnffv2rdhM/q82bNhA3759z7goYW5TpkwxugRRiVDKx7t/HzkvPkVk5+7UuebGgB8/unc/YgcPZ//7/8aduSPgx/+rk2VTunYV3pw9NT6lHUCzWolo3irsV2wPpfMmFEk+6pJs1CXZqE3yCU/Vbs4rm97p8XiwWAzdnU0IESZ0XSf3jefRrDaSHnm6Yv/yQEu47T5s9eqz98VR6F5vUJ7jVA7N+BFbYhIR7Toa8vzOlm0o3aDm9nKicho6Wujfci6EEEKEhCq9mi0sLCQzM5PMzEwAcnJyKn5f/rFx40a++OILkpKSglqwUF/nzp2NLkFUIlTyKZw6meLFf5D4j8ew1q4TtOexREZS/5F/4dq2lfzvvgra88CJs/EXF3Fo1s/EDhoWtDcgTiWieSt8efvwHsgz5PlVECrnTaiSfNQl2ahLslGb5BOebFV50L///W+eeeYZADRN45JLLjnh43Rd57HHHgtcdcKU/H6/0SWISoRCPp49Wez/4D/EXngRtc4K/gJpEc1bUnvk1Rz46hOizzkPR6MmQXmeE2Vz+LeZ6K5SYi4YEpTnrApn0xYAuLZsxFbDC9KpwuznTagPnps9n1Am2ahLslGb5BOeqtScDxw4kOjoaHRd56GHHuLuu+8mLS3tmMc4nU7atWvHeeedF5RChXmsWLGCVq1aGV2GOAmz56P7/ex99TmstWuTcNu9Nfa88dfdTNG838h94wVS3vgAzWoN+HOcKJuCad8T1fUs7InGzUqyJTXAEh2Da/PGGl8tXhXmPW/CY8V28+YT+iQbdUk2apN8wlOVmvMePXrQo0cPoGxF9r///e8kJycHtTAhhDiRgu/HUbp6OcmvvYslqlaNPa/FGUHiPx4j6x+3UfD9OGpfckXQn9O1fSuu9WtIGvVC0J+rMpqm4WzaHNfWTYbWIYQQQggRyqp9A+NTTz0ljbmo1PDhw40uQVTCzPl49+WS9+kHxA69hKgOXWr8+SPbdSTuosvI+/R9PDnZAT/+X7Mp/HEi1tp1qHX2uQF/rupyZjTHtXmj0WWcFn9JCTnPP8H2kRey5+mH8eYfqPYxTHveaDqhP6ndxPmEAclGXZKN2iSf8FSl5vzLL78kLy+v4ten+hDhbe7cuUaXICph5nz2vfs6lshI6t58h2E11L35dqwxceT++8VKd684HUdn4zt8iMKffiR2yCVodntAn+d0OJu1wJuTje9QodGlVIvu97Nn1AMULZxPzAVDKV27ij2jHkD3+ap1HDOfN+FA8lGXZKMuyUZtkk94qtK09htuuIE//viDunXrcsMNN1T6WE3TuP766wNRmzCp8jdyhJrMms/h+XMomvcb9Z94Dmt0jGF1WKJqUe/+R9jz2P0c+ulHYgcNDdixj86mcNr36F4PccNGBOz4Z6JiUbitm4nqWPOzFk7XoV+mUbJiKckvv01U527U6tmbrPtupWDSd9S+9KoqH8eM541+1P3meojfe27GfMKFZKMuyUZtkk94qlJzvn37dho0aFDxayEqEx8fb3QJohJmzMdfXMT+d14jqlsPonufb3Q51OrWg5gBg9n/3/8Q1fUsbAn1AnLc8mx0n5eCyWOJ6TsQW92EgBz7TNkbpqE5nbi2bDRNc657veR9+gHRffoT1bkbAJGt2xE7aBj5331F3EWXVXlWghnPm2OE+Mx20+cTwiQbdUk2apN8wlOVmvNGjRqd8NdCnEjv3r2NLkFUwoz55H35Eb7CAurd8yCapsYIYMJt91K8dCG5b75Eg2dfC0hd5dkUzZuDd28OcZdcfsbHDBTNasWR3gzXFvPcd1407zd8efuoc9Xfjvl87UuvonDa9xz+/Vdi+l1QpWOZ8bwpp8YZE1xmzifUSTbqkmzUJvmEp2ovCCfEqUyaNMnoEkQlzJZP6eYNFEz8jvjr/449SZ3FKK2xcSTe+zDFC+dxaMaPATnmpEmT0P1+Dnz9GZEduxDRrGVAjhsozqbNcW8xz4rtBVMmEtGmPc70Zsd83tGoCZEdu1I4dXKVj2W286ZcODTmYN58woFkoy7JRm2ST3g6reb8q6++YvDgwbRp04b09PRjPjIyMgJdoxAiTOk+H/vefBlH43Rqj7jS6HKOU6tn77Lp7e/9G+++3IAc8/Ccmbi3bSb+b7cG5HiB5GzaAveunfhLS40u5ZS8efspWbGE2AsvOuHXo/sOoGT1CnwH82u4MiGEEEKIE6t2c/7yyy9z/fXXk5mZSYcOHTjvvPOO+ZApGKJ9+/ZGlyAqYaZ8Cn4Yj2vzBhLvfQTNVqW7cGpcwu33oUVGkfvGC2e8env7Nm048MVHRHXrQWTbDgGqMHCcGc3A78e9c5vRpZxS0fzfwGqlVo8Tb0NX/vmiBb9X6XhmOm/Khfht5scwYz7hQrJRl2SjNsknPFX71e6HH37InXfeydtvvx2MekQIsCuw7ZM4ObPk492fS95nHxA75GIiWrc1upyTssbEknj/o+x54h8UTPyO2iOuOO1j2ZctxLM7k/qPPRPACgPH0SgdNA33ti1EtGhtdDmVOvz7LCI7dMEaG3fCr9vqxBPRtgOH5/120tH1o5nlvAlXko+6JBt1STZqk3zCU7VHznNycrjkkkuCUYsIEUuXLjW6BFEJs+Sz771/Y3FGGLqneVXVOqsncZdeyf4P36Jk3erTOobvUCG+8d8Q3ae/cveal7NERGBPbohr+1ajS6mUv7iIklXLiT6n8plctbr1oGTVcnSv95THNMt581caOuEwhm7WfMKBZKMuyUZtkk94qnZz3qVLF7ZuVfuFmRDC3IoWzqPo91kk3HafoXuaV0fCLXcR0aI1e597HG/+gWp/f97H72Lx+Uj4v3uCUF3gONKb4t6+xegyKlWychn4fER1PbvSx0V27IJeUkzppvU1VJkQQgghxMlVuzl/4403eP311+XdHHFSQ4YMMboEUQnV8/GXlLDv7VeJ7Nyd6L4DjC6nyjSbjfqPP4fu9bLn8X/gLyqq8vcenj+HwqmTqX3TbdgSEoNY5ZlzNmmKa9uWM76/PpiKly3GltQAW4OUSh/nbNYCS1QtSpYvOeUxVT9vTuzPtdrVTSswzJlPeJBs1CXZqE3yCU/Vbs5vvPFG8vLy6N69OykpKbRv3/6Yjw4d1FvESNSsJUtO/UJXGEf1fA589Qm+AweU2tO8quyJ9Ul+4U08WbvY8/RD+N2uU36Pa8c2cl/+F7V69mZtnfo1UOWZcaQ3xV9YgO9AntGlnFTxskVEde5+yn8/mtVGRPuOlKw89ZvNqp83J6cRDhuqmTef0CfZqEuyUZvkE56q3ZzXrVuXtm3b0rt3b5o3b07dunWP+YiPjw9GncJE9u7da3QJohIq5+PavoWD40dT55obcKSkGl3OaXE2bU6DZ1+jdN0ash+5F1/BwZM+1p25g+xH7sVWP4n6Dz/F3tzAbMcWTM4mZdtlurapObXdm38AT+YOIjt0qdLjI9t0oHTDOnSfr9LHqXzeCMlHZZKNuiQbtUk+4anaq7XPnj07CGWIUBIbG2t0CaISquaj+/3se/Nl7MkNqTPyWqPLOSOR7TuR/Mrb7HnqITJvvZaE2+8luvf5aJay90N1n49DM6ez/903sCXWJ/mlt7BE1VI2m6PZkpLRIiJxb99CrW6V39NtBNeGtQBEtGlXpcdHtGqLXlKMO3M7ziZNT/o4M2RzYvqRReFCm3nzCX2SjbokG7VJPuFJzY2DhakNHDjQ6BJEJVTNp3Da95SuW03Ka++hORxGl3PGItu0J+2D/5H7n5fZ+/yT5H34NhFt2gMapetW483NIbrvQOrd+xDWWtGAutkcTbNYcDTJwK3oiu2l69Zgja+LLTGpSo93Nm8FFgul69dU2pybIZtwJvmoS7JRl2SjNsknPFV7WvucOXNO+SHC27hx44wuQVRCxXw8uXvJ+/BtYi4YSmSHzkaXEzC2hHokP/saDd/6mFrnnIf3QB7eA/up1fNcGr79CUmPPVPRmIOa2ZyIs0mGstPaS9evJqJV2yqvV2CJjMTRpCml69dW+jizZHM0/Zhfh/Z952bMJ1xINuqSbNQm+YSnao+c9+nT55QvenynuHdPCCHK6bpO7hsvoEVGkXDbvUaXExQRrdoS0aqt0WUEjKNJUwpn/Iju9aLZ1JmApfu8lG5cR/x1t1Tr+yJatqF07aogVSWEEEIIUTXVflU1a9as4z63f/9+Jk+ezLx583j33XcDUpgwrzZt2hhdgqiEavkUTptMydKFNHj+DdPsaR4sqmVzMs70puD14t6dibNxutHlVHBv34peWkpE6+q9EeJs1oLCad/jd5VicUac8DFmyeZENHRQeOu7QDBzPqFOslGXZKM2ySc8Vbs5P++88074+UsvvZTbbruN6dOnM2jQoDMuTJhXdHT0qR8kDKNSPp69e9j/37eIGTSMWt17Gl2O4VTKpjKOIyu2u7dtUao5L12/BqxWnM1aVuv7nE2bg9+He8c2Ilq0PuFjzJLNX2maBppGqO90btZ8woFkoy7JRm2ST3iq9j3nlbnkkkv49ttvA3lIYUILFy40ugRRCVXy0f1+cl97Hmut6JCdzl5dqmRzKtaYWGz1EnFtV+u+89J1a3BmND/p6PfJOBqng8WKa8umkz7GLNkcp/wutBAfOTdtPmFAslGXZKM2ySc8BbQ5z8/Px+VyBfKQQogQlT/mf5SsXEriA08csyiaMAdHk6bKrdheum51tae0A1icETjSGuHasjEIVRmnrB/Xjvq1EEIIIVRW7WntmZmZx33O5XKxatUqHn30Uc4+W719b0XNuuCCC4wuQVRChXxK1q7iwOcfUueK64nq3N3ocpShQjZV5WiSweFfZxhdRgVfYQGe7N2nvfCeM6N5pSPnZsrmGJoGaKE+q928+YQByUZdko3aJJ/wVO2R88aNG9OkSZNjPlq2bMnIkSOJiIjgnXfeCUadwkTWrFljdAmiEkbn4ztUyN4XRhHRsjXxf/u7obWoxuhsqsOZ3hTvvr34DhUaXQpARWNd3fvNyzmaZODeuR39JEPMZsrmTzplt5zrhHp3bs58woOZstF1nfVZPr5d4OZfE0p58JsS7v2yhOcmlfL5HDcrd/rw+UPnXDJTNuFI8glP1R45//TTT4/bSi0iIoLGjRvTrVs3LJaAzpQXJpSVlWV0CaISRuaj6zq5rz+Pv7iI+o+9r9Q2XCow07njaNIUAPeObUS262hsMYBr6ya0iAjsyQ1P6/sdjdPRS4rx7svFnlj/uK+bKZtjVIych05DcSKmzScMmCEbr0/n5zVexi30sGO/ToQdWiZbqB2lYbNCboHOsu0e/jfXQ1wkDOpg57LuNuKjzf2a1wzZhDPJJzxV+5XxDTfcEIQyRCipVauW0SWIShiZT/7Xn1E07zeSnn4Ze/0GhtWhKjOdO47URmCz4dq2RZnm3JneDM1qPa3vd6Q1AcC9c/sJm3MzZVPh6HvODS0k+EyZT5hQPZvNOT5e+9HN1r1+ejSzctdAO+3TLFgtxw5E+XWdjdl+Zq/38sMyDxMWe7ikm53re9mJdGgnObraVM8m3Ek+4UmGrUTADR061OgSRCWMyufw779y4IsPif/brUSfc+ItGcOdmc4dzWbDkdYYtyIrtru3bCKyfefT/n5b/SQ0pxNP5nbodvzaKWbKppwOf850C/GRczPmEy5UzUbXdSYs9vLBTDeNEjTevTGCFg1O/uaeRdNolWKlVYqV63o5mLDYw7cLPPy61su9Fzjo2dx8L6lVzUaUkXzCk7nn4wgljRkzxugSRCWMyMe1ZSN7X3mG6D79qXPNjTX+/GZhtnPHqciK7f7SUty7duJo2uy0j6FZLGVvNuzYdsKvmy2b44R4c276fGqYX9dZuMXL61NdPDS6hBcmlzJjtQe3N/D/TlTMxufX+c90N+/94ubS7jbevymy0sb8r6IjNK4/18Gnt0aSUd/Ck+Nc/Huai1KPuc4zFbMRf5J8wpP53uYTQpiKJzeHPaMexJHamMR/PnHcmhXCvBzpTTk8fw66349m4Hoj7h1bwe/HmdHijI7jSGuCO3NHYIpShKZpZTPbzdUziCDaW+Dnpe9drNrlJ62uRqMEC7sP6Py61s3nczw8MNhJ5yand3uIGfj8Oi9MdvH7Rh//GOxgSEf7aR8rqbaF50c6mbLcy/u/uFm728ezIyNoUFvGvoQQp0eacxFwLVqc2QtkEVw1mY/3QB7ZD90NVisNnnkFS0REjT23GZnt3HE0yShbRG3vHuwNUgyrw7VlE1isOJqkn9FxHI3TKfpjLrquH/cmktmyAcpGy7Wjfh3CTJmPATL3+3ngm1KsFnjlqgg6N7ZU/Fvfud/P2z+5eGh0KXcMcDCi2+k3rUdTKRu/rvPqj27mbPDx1AgnvVqc+ctgTdMY1tlOu1QrT44r5Y7PShh1SQSdGqv/BodK2YjjST7hSd7aEwGXkJBgdAmiEjWVj6+wgOyH78FfWkrKK+9gS0iskec1M7OdO84jK7a7DJ7a7tqyCUdaYywO5xkdx5HWGH/RYXx5+4/7mtmyKVO2UruGFvID5+bMp2blF+k8MqaUmAh494YIujSxHvMmVKMEC69cHcHIs+y8+7Ob8Ys8AXlelbL5YKabmWu8PHpRYBrzozWuZ+HdGyJpWt/CQ6NL+X5pYP7+gkmlbMTxJJ/wZHhzvmLFCoYMGUJaWhqRkZHEx8fTo0cPvvrqK6NLE6dp3rx5RpcgKlET+fgKC8h+9D58Bw+Q8srbho6qmonZzh1r3QQsMbG4txm7KJxr6yacTZuf8XHsjY6s2J65/bivmS2bMkeNnIfQ3swnYs58ao5f13lhcikeL7x4ZcRJtwCzaBr/d76DK3vYee8XN3M3es/4uVXJZuoKD+MXeblzgIN+bYIzcTQ2UuOlKyMY3sXGf35y8/FsN7rCs1ZUyUacmOQTngJ6dfr999/RdZ3evXtX+XsOHjxIamoqV111FSkpKRQVFfH1119z3XXXsWPHDp544olAliiECDJP7l72PHYf3vwDpLz8No60xkaXJIJE0zSc6cYuCqf7fLi3byH6vPPP+Fj2pGQ0uwP3zu1Ede4egOqMV3HPeciPnYvKfL/Uy7Idfl65KoLE2FOPy9zSx07WAT+vTHHRpJ6FlHjDx3LOyJpdPv4z3c3QTjaGdwnuHZ1Wi8ZdA53Uj7PwwUw3+w/pPDDYgc0q660IIU4toFeofv364ff78fl8Vf6ePn360KdPn2M+N3ToULZv386HH34ozbkJ9e/f3+gSRCWCmY9rxzb2PHYfWK00/M9HOBqmBe25QpEZzx1HkwyKly4y7Pk9uzPRXS6cGWc+cq5ZrdhTG+HeueO4r5kxmyN7qZX9MsR7c1PmU0MOHPbzyWw3wzrZ6FLFhd40TeOBIU7u+KyEpye4eOdvETjtp9dcGp1NYYnOc5NctEqxcPdAR40tSjryLDt1ozVe/sHFwSKdp0Y4ldsP3ehsROUkn/AU0LdCn3zySUaNGhWQYyUkJGCzyXp1ZrRp0yajSxCVCFY+RYv/IOv+/8MSE0vDN6UxPx1mPHccTZriydqF31VqyPO7juyz7kxvGpDjORo1wb3z+O3UzJjNsaPlod2dmzOfmvHpbx5sVripj6Na3xcdofHUpRHsyvPz+e+nf/+0kdnous4bU8u2OHtsuLPGR6/7tbHx0pURrN3t4x9flXLgsFrnoZw3apN8wlNAm/NRo0bx1FNPndb3+v1+vF4v+/bt47333uOnn37i4YcfDmR5ooZkZmYaXYKoRKDz0X0+8r78iD2P309EqzakvPEBtrqyiMnpMOO542ySAX7/CUeba4J72xasdethjasdkOM5GjU+4XZqZsxGRysbOde0UO/NTZlPTdiV5+enVV6uPcdBbGT1G9OMRAvXn2tn3EIPG/dUfVbk0YzMZuoKL79v9PHPwc4qTecPhk6Nrbx5XQR5h3Xu+bKEXXl+Q+o4ETlv1Cb5hCdlbiK64447sNvtJCYmcv/99/PWW2/xf//3f5V+T2Fh4TEfLperhqoVlXE6z2zFZBFcgczHm3+A7Mf/Qf5XnxJ//d9p8NwbWGtFB+z44caM546jcTpoGu7txiwK59q+JWCj5gD2lFT8hQX4DhUe83mzZVO+CJWmaWXbnIf4vHaz5VNTvp7nIT5aY1jn05+JePlZdtITLbz2oxuvr/r/jozKJnO/n3d/djOko41zWxo7EzOjvpW3/xaB3Qp3f1nCml2n90ZHoMl5ozbJRw0ul+u4njOYNP00fmIXFhby7rvvMmvWLPLy8qhbty59+/bl9ttvp3bt2qdVSGZmJrm5ueTm5vLDDz/w4Ycf8vLLL/PAAw+c8Pnj4uKO+/yIESO444476N69O1OmTAGgc+fO+P1+VqxYAcDw4cOZO3cueXl5xMfH07t3byZNmgRA+/btsdvtLF26FIAhQ4awZMkS9u7dS2xsLAMHDmTcuHEAtGnThujoaBYuXAjABRdcwJo1a8jKyqJWrVoMHTqUMWPGAGX7FCYkJFSsuti/f382bdpEZmYmTqeTESNGMGbMGPx+PxkZGaSkpDBnzhyg7J78zMxMtm3bhs1mY+TIkYwfPx63202jRo3IyMjg119/BaBXr17k5uZWTIO56qqrmDx5MsXFxTRs2JDWrVszY8YMAHr06EFBQQHr1q0DYOTIkUyfPp1Dhw6RlJRE586dmTp1KgDdunWjtLSU1atXA3DJJZcwe/Zs8vPzSUhIoEePHvzwww8AdOrUCYDly5cDMGzYMBYsWMD+/fupU6cOffr0YeLEiQC0a9eOiIgIFi9eDMDgwYNZtmwZOTk5xMTEMGjQIMaOHQtA69atiYuLY8GCBQAMHDiQdevWsXv3bqKiohg+fDijR48GoHnz5iQmJjJ37lygbC2ErVu3snPnThwOB5deeiljx47F6/WSnp5OWloas2fPBqB3795kZWWxdetWLBYLV1xxBRMmTMDlcpGWlkbz5s355ZdfADjnnHPYv38/GzduBOCKK65gypQpFBUVkZKSQtu2bfnpp58AOOusszh8+DBr164F4LLLLmPGjBkUFhZSv359unbtyo8//ghAly5d8Hg8rFq1CoCLL76YOXPmcODAAerWrUuvXr2YPHkyAB07dsRisbBs2TKgbL2GRYsWkZubS1xcHOeffz4TJkwAoG3btkRFRbFoUdn9wRdeeCErV64kOzub6OhoBg8ezHfffQdAy5YtiY+PZ/78+QAMGDCADRs2sGvXLiIjIxk+fDgzXnyGtPmzsNpsOG+7j/n5hwDo27cvO3bsYPv27djtdi677DLGjRuHx+OhSZMmNG7cmFmzZgFw7rnnkpOTw+bNm9E0jSuvvJJJkyZRUlJCamoqLVu25OeffwagZ8+eHDhwgA0bNgBw+eWXM3XqVA4fPkxycjIdOnRg2rRpAHTv3p3i4mLWrFkDlF0bZs6cSUFBAYmJiXKNCPQ14ofReFt3YHlGa6BmrxEbL7uQA+nNif3brQG5RsQV5NN8/JdsvPhqCuPrmfcaMWkS09a0o1mim82Ha9MkfyUtu7pq7Bpx8cUX8+2336LrOs2aNSMpKYnff/9drhE1eI2Y9utCvt01gKu6uWkbu+WMrhGZ+TYmZ5/HtWd7ce6dVv1rRA2/jsjek8OPe/tgj4zj/Jgp2C0+JV5H1GvQhEnbW7MpB/rUW8a1A9PD9nWEXCOMv0Yo9TpC4V7jzTffrDgHjlZQUEBsbOxxnz9T1W7Ot2/fTt++fcnMzKRRo0YkJSWRk5PDzp07SU1NZdasWaSnp59xYbfffjsff/wx2dnZ1KtX75ivlTfnu3btOuYvxel0yrtMChgzZgxXXHGF0WWIkzjTfLwH8tj39qsUzZ1NrXP7Ue/uB7DViQ9gheHLrOfOnqcfxl9STMrLb9fo8/oOFbJ9xEDqP/ovYvpdEJBj+ouL2Db8fOo/8jQx5w+q+LzZstF9Xv725Ho6pjtYleukZfF6HnnuQqPLChqz5VMTPvvNzfjFHr69K4roiDO/1/qtn1z8ssbLF7dFUadW1Y9nRDYTFnt472c3/7k+gjYNq7YIXk1xe3VeneJi1jof/3e+g8u622pskbq/kvNGbZKPGlwu1zGzswsLC0lNTQ1ac17tae333nsvpaWlzJs3j+3bt7NgwQK2b9/O3Llzcblc3HfffQEprHv37ni9XrZtO35hnnKxsbHHfEhjrga/X537qcTxTjcf3eMhf+zX7LxxJCWrV5D0xPM0GPWCNOYBZNZzx9GkqSF7nZdv4eZoErhp7ZaoWljrxOPO2nXM502XTcW+5uGxlZrp8gkyt1dnynIPg9rbAtKYA/ztXAcWrazpr46azmZvwZHV6TvblGvMARw2jUeHO7myh50PZrp5Z4Ybn9+Y81POG7VJPmpwOp3H9ZzBVO3m/Ndff+X555+nR48ex3y+Z8+ePPfccxXTHs7UrFmzsFgsARmFFzUrIyPD6BJEJU4nn6LFC8i89RryPn6P2IFDaPTZdwHZV1ocy6znjrNJBr6D+Xjz82r0eV3btoDdjiO1UUCPa09JxfOX5txs2ei6/6id1LSQ30rNbPkE269rvRQUw8Vd7QE7ZlyUxt/OdTB1hZcte6t+z3RNZqPrOm/95KaWU+Pmaq5OX5MsmsYtfR3cN8jB98u8PPiNMSu5y3mjNsknPFV7hQyn00lqauoJv5aWllbt0etbb72V2NhYunfvTv369dm/fz9jx45lzJgxPPjgg8dNaRfqS0lJMboEUYnq5OPeuZ39H71D8cJ5RHbsQtKoF3AGcJRSHMus547jyIJs7u1bsdWpW2PP696+BUdaE7QAb7tpT26Ie+f2Yz5numx8R0ZcyqfLhnh3brp8guz7ZV66N7XSMD6w6/4O62zj+2VlU8ZfvyaiStOxazKbORt8/LHFx78udQZsxkAwDetsp1GChWcmurj9sxKeGuGkdUrNjfbLeaM2ySc8VfuqPXz48Iob5/9q7NixDB06tFrH69GjB4sWLeLOO++kf//+3HLLLeTk5PC///2PV155pbrlCQWULzAh1FSVfHwFB9n3zmtk3not7p3bSXryBZJfeUca8yAz67ljb5CC5nRWTDOvKa5tgV2pvVz5yPnRS7KYLhu9vDk/0p+HeHNuunyCaOd+Pxv3+BncIfArlNusGncMcLAy08+cDVUbPa+pbA6X6rwzw805za30amHs6uzV0T7Nygc3RVA/TuP+/5Xy9byam+Yu543aJJ/wVKWrV/kKjgBXX301N998MyNHjuTqq6+uWBDu66+/ZsmSJXzyySfVKuDGG2/kxhtvrF7VQoig0D0eDk4eS/7Xn4HfT92bb6f2xZejOdSdHiiMp1mtOBqll00zryG63497x1aie/cL+LEdKan4Dx/Cf6gQa+zxO4OYQcVWaqg/eigC6+c1XmIioHtGcEZgu6XbOCvDy0ez3PRoZsVhU+Pf2Eez3JR6dO4eaL6fVwkxFl6/JoIv5nj4fI6H+Zt9PDzUSVqCMjseCyFqSJWa865dux4zdUnXdXbt2nXMsvLlLwQGDhyIz6fG/o3CGH369DG6BFGJE+Wj6zpF834j76N38ORkEzvkYupe/3estevUfIFhzMznjqNJRo0uCufJ3o1eWhq0kXMAz+5dWFuXNeemy8YfXtPaTZdPkPh1nZlrvPRpZQtq03xrPwd//7iEyUu9jDyr8vvaayKb1bt8TFnu5e6BDurFmrOhtVvL7kPv2dzKKz+4uPWTEi4/y86VPexEOYOTpZw3apN8wlOVmvPPPvss2HWIEJKZmUmDBg2MLkOcxF/zKd28gf0f/IfSVcuJ6taDpH+9grOxLMRoBDOfO870phye9TO6z4dmDf49k+7tZW8EOILSnDcse46sXUS0bguYMBtd58857aG/IJzp8gmSlTv95BbqDGgX3GndjetZGNrJxlfz3AxsZyMu6uTNY7CzcXt13pjqolWKhWGdzTOd/WRap1j5782RfDXPw9hFHn5c4eGG3g4u7GDDZg1sky7njdokn/BUpavY3/72NwB8Ph9bt24lMTGR2rVrB7MuYWLbtm3jrLPOMroMcRLl+Xj355L36Qcc+mUajrTGNHjhTWp1O9vo8sKamc8dR+MMdLcLT/bugK+efiKubVux1okPygJ0lsgorPEJx6zYbrpsjoyca+X9eYhvpWa6fILk5zVeUupotE4J/ujx9ec6+GWNl//NdXPXwJMvBhzsbL5d4CErX+eDmyKwWtSYYn+mnPay1eaHdrLx2W8e3pzu5pv5HkZ0szOovY2YyMD8OeW8UZvkE56qdfXWdZ3WrVuzYMGCYNUjQoAtwCsni8CyWa0U/DCenTddSfHiBdS7+0FS//s/acwVYOZzp3x6eU1NbXdv3xLQ/c3/yp7S8Jjm3GzZ6Hp4TWs3Wz7B4PHpzN3opV8bW5VWUT9TdWppXN3TzvfLvOzKO/l+zMHMJnO/n2/me7jibDvpieaczl6Z+nEWHrnIyUe3RNKxkZWPZ7kZ+VYxz0wo5bf1Xg6Xntl5LeeN2iSf8FSt1G02G0lJSfj9J78ICzFy5EijSxAn4d6dSY8/ZrFv9fKy+8pvuRNrdIzRZYkjzHzuWGvXwVonHtf2rUSfd37Qn8+1bQvR55wXtOPbU1Jxb91c8XvTZVOx2nNojCSeiunyCYIVO30UueDcljX3gv7S7nZ+WF62ONwzl0Wc8DHBysav67wxzUVinMZ1vQK3n7uK0hMtPDzMyd/72vllrY9fVnt5ZqILqwWa1rfQooGFZkkWGiVYSIzViI/WqjSLQM4btUk+4anaV/Arr7ySL7/8kiFDhgSjHhECxo8fz6WXXmp0GeIouq5TOG0y+9/7N6XOCJq8+i5RHbsYXZb4C7OfO44mTSvuBQ8mf3ER3j1ZQbnfvJwjJZWiOb+i6zqappkvG92PrmllvbkW+vecmy6fIPh9g4/kOhrp9WruDRmHTeOWPg6en+xi5U4fHRodv95EsLL5cbmX1bv8vHZ1hDIrxgdbfLSFy8+ycPlZdvYW+Fm01ce6LD+rMssWxCt/T86iQWxk2fR4p63s/w5b2eXAcuRWF4sG+/blklS/fsXvy/9v0SA2SqNOlEadWhrJdTRS61qoH1e1pl8EhlzXwlO1m/OOHTsyZswY+vXrx4gRI2jQoMFx06dGjBgRsAKF+bjdbqNLEEfxHSok998vUvT7LGKHXMyS+GTaSGOuJLOfO84mGRyeH/x9WV1H9lN3BnNae4MU/MVFFdupmS0bvWKGW/nP59Duzs2WT6D5/DrzN/sY0LZmprQfrW9rK+MXW3h/ppv3bozA8pfnD0Y2uYV+PvzVzZCONjo1Dv4ClCqqH2dhWGcLwzqX/b7ErbPnoM6+wrJFAQtLdFwecHnL/u/2ld3doutlsw50HQr2u6jlLJtoo+vgp+z/Li9s3esnv0gnv0jHc2QTJocNMupbaNvQQtuGVjqkWQN2/7s4Xrhf18JVtZvz66+/HoCsrCxmz5593Nc1TZOt1MJco0bBXwxKVE3pxvXk/OsR/KUlJI16gehz+5E6f77RZYmTMPu540hvinf8aPzFRViiagXtedzbtoDViiOtcdCew9YgBQDPnmyssXHmy+boBeEg5O85N10+AbYuq6yR6tWi5htVTdO4/XwH9/6vlF/WeBnY7tgp5oHORtd1/j3NTaRD49Z+5tvTPFgiHRrpiVq17r2fP38/PXs2r/Qxfl1nX6HOrjw/O/frrM/28dt6H2MXerFo0CHNwjnNbZzb0kpCTOjd92+kcL+uhatqN+ezZs0KRh0ihGRkZBhdggAKZ/zIvjdfxpHRjJQnn8eemARIPiozezaOJmX1u3dsr9iCLBhc27fgSG2M5gjeC3N7g2QAPDlZRLRoZb5sypvxigXhjCulJpgunwD7faOXutEarWpglfYTaZtqpU8rK/+d6aZH02NXEw90NjPX+li01cezI51ER8io7ZmoSjYWTaN+nEb9OAtd0wHK3nzZW+Bn4RYf8zb5+GCmm/d+ge4ZVoZ0tHFWU6tMfw+AcL+uhatqX8XPO++8U36I8Pbrr78aXUJY031e9r37OrmvPkvM+RfQ8PX3KxpzkHxUZvZsHI2agMWKa+umoD6Pe9sWHOnBfdFijYnFUisa755swHzZVExrPzJ0rod4d262fAJJ13Xmb/JxTnPrcVPKa9Lt/R24vfDJ7GOn4gYym7zDft792UXf1lZ6NpOVrM/UmWRTP87CRV3svHxVBOPvi+KeCxwcOKzz5DgX175XwvhFHkrcoX3dCbZwvq6FM7myCRFC/MVF5Dz3OMXLFlPvngeJHTqixu8/FOHL4nDiSGsc1OZc13Vc27dQ6+xeQXuOcvYGyXhysoP+PEGh6xxZDe7I740sRgTTrryye43PbmrsvdcJMRZuOs/Buz+7GdjeRuuUwNbj13Ve/sGFzaJxdyX7qouaFx2hMayznWGd7WzO8TF+sZf//urmf/PcjOhq59Ludmo55bWIEFVxWs355s2b+e9//8v69espKSk55muapjFz5syAFCfMqVev4L9oFsfz5u1nzxP/wJ29m+Tn3yCqy1knfJzko65QyMbZrAWuLcFrzr1796AXFwd1pfZytgYpePZkASbM5uiRc/SQv+fcdPkE0OJtPuxWTrhSek27qIuNn9d4eXWKiw9uisRp1wKWzYTFXpZu9/PylU7ioqTRC4RgnDfNkqw8MszKjb3tjF3o4Zv5HiYt8XDNOQ6GdbaFzcr6gRDO17VwVu1p7WvWrKFTp0788MMPTJ8+nfz8fDZv3szs2bPZunUreoi/ABCnlpuba3QJYce9aye777kF78F8Gv77vydtzEHyUVkoZONs2hz39q3oPm9Qju/aVrZVmzO9WVCOfzR7UjKeI9PaTZfNkZ/FmvbnbeehzHT5BNCirT46pFmJsBsftNWi8dBQJzkFOh/NKpveHohs1mf5+HiWm0u72+iaLpM+AyWY5039OAt3DXTy5e2R9Ghu44OZbm76sIT5m4LzsyEUhfN1LZxVuzl/7LHHuOCCC1i7di26rvPJJ5+wa9cufvjhB0pLS3nuueeCUacwkU2bgnu/qTiWa/sWsv5xG5bISFLf+uSUTYvko65QyMaZ0Rzd7cKduTMox3dv24IlNg5r3YSgHP9o9gbJeHNz0H1e02WjV6zWXtawhfob52bLJ1BKPTorM310zzB+1Lxc43oW/q+fg4lLvCzceubnzoHDfp4a76JZkoVb+sjq7IFUE+dNYqyFB4c4+eiWSFLqWHhynIvHvislO99/6m8Oc+F6XQt31W7Oly1bxt/+9jcslrJv9R95ATBkyBAeeOABHn300cBWKIQ4qdJNG8j65x1Y69Yj5bX3sNVLNLokEeYcTcu25XFt2RiU47u2bcGZ3rRG1lKwJaWAz4d3nwlHL/SjF4QzfkRVBMfKnT48PuiWrk5zDjC8i43uGVZe/N5Fgef0t1V0e3WenuAC4OlLnTIl2sQa17Pw0pVOnh7hZHuun5s+LOGLOW7c3tB+41CI6qp2c56fn098fDwWiwW73U5+fn7F17p27cqyZcsCWqAwn6uuusroEsJCydpVZD94J/aUVFJefQdr7TpV+j7JR12hkI21VjT25IZBu+/cvX0LjibBv98cjtpObU+2+bLxl6/PXr4gXGi/ADZdPgGyaKuPpDiN1LpqNa2apvHYRU5qR2osKO5PYUn1//15fGWN+ZYcP09f6qRutOyhHWg1fd5omsa5LW18emskI8+y8818D7d9WsKGbF+N1mEW4XpdC3fVvtKlpKSwf/9+AJo2bcqcOXMqvrZq1Sqio6MDV50wpcmTJxtdQsgrWbWc7EfuxZHRnJSX38IaE1vl75V81BUq2Tgymgdl5NxfWoonaxfOGlgMDijbglDT8OZkmy6bP6e1l7Xnod2ah865U12Lt/nolm5VcleOmEiNF66IYH+BiyfGlnKoGg26x6fz/CQXy7b7eOYyZ8BXfhdljDpvIh0aN/dx8P5NkThtGnd/Ucp/f3Xj8oT6lap6wvW6Fu6q3Zz36tWL+fPnA3DNNdfw0ksvccstt3DHHXfw6KOPMmzYsIAXKcyluLjY6BJCWum6NWQ/8U8iWrYh+YV/Y4mq3pRByUddoZKNs2lz3Fs2/bnXdoC4d24DXcdRA4vBAWgOB7aERDx7ssyXzdHT2iHkR85Nl08AZB3wk5WvK3W/+V8l17EwsP4fZOb5ue9/JeQWnvqasP+Qn398VcqCzT5GjXDKAnBBZPR5k55o4Z0bIrjpPDsTF3u49ZMS1u6WUfRyRucjjFHtK97jjz9OdnbZ6rUPP/wwOTk5fP3112iaxuWXX85rr70W8CKFuTRs2NDoEkJW6eYNZD92H86MZjR45lUsERHVPobko65QycbZtDn+4iK8OdnYkwP3Z3Jv2wIWC45GjQN2zFOxHVmxvWHvtjX2nAHh9wOWI1udayHfnIfKuVMdi7f5sFmgU2N1m3OAzhnRXNIqkkfGlHL7pyXcc4GT3i2PH+3XdZ3fN/p4+yc3Fgv8+7oIGTEPMhXOG6tF46qeDno2t/Hqjy7u/bKUS7vbuLmPI+zXGFAhH1Hzqt2cZ2RkkJGRAYDVauWtt97irbfeCnhhwrxat25tdAkhybV9K9mP3Is9NY3k597AEhl5WseRfNQVKtk4m7YAwLVlU0Cbc9e2zdhTUrE4q/+m1OmyN0jGnbnDdNn8uTp7+Yvb0G7OzZZPICza6qNdqoVIh9oNTOvWralb18I7f4vg39PcPDPRRUaihfNaWWlSz4IObM/1M3u9l+37dM5uauWfg53ER6v95woFKp03jRIs/Oe6CMYt8vDZbx4WbfXx8DAnLZPD9w0alfIRNUdW1xABN2PGDKNLCDnu3ZlkP3w3tnr1SX7hTSy1Tn/1W8lHXaGSjS2+LtaEepRuXBfQ45av1F6T7A1S8OZkmy8bvx+dP1dqD/GBc/Plc4bcXp0VO310U3hKe7nybOKjLTw7MoLXro4guY7G6AUenhznYtQ4F2P+8JBa18JrV0fw/OUR0pjXENXOG6tF44qzHXxwUyROe9m96J/95sbjC/EL2Emolo+oGVUaOX/llVe4++67iazGSN3SpUvJyclhyJAhp12cEAK8+3PJfvgeLDGxpLz0n2ot/iaEUSJatqF0w9qAHU/XddzbtxLVuXvAjlkV9qQG+A7mY/G4a/R5z9iRblzTNNlJLQRtyPbj8kJnxae0n0inxlY6Nbbi13UOFpX9O61dS8Mi/1DFEY3rlc20+Ga+h6/mefhjS9koenqijCmK0Felf+WfffYZ6enpPPHEE2zYsOGkjystLWX8+PEMGTKEnj17UlBQELBChXn06NHD6BJChu9QIdmP3g+6TspLb1V5u7TKSD7qCqVsIlq2wbVpA7ovMIv7+Pbvw3+oEGdGzSwGV87WIAWA7ulNavR5z1j5Ynzakf+E+ND5qc6dQyU6czd6WbDZGxIrQi/f4SMmAjLqq9+snCwbi6YRH20hPtoijblBVP6ZY7NqXH+ug3f+FoHXp3PHZyWMXuDG5zf/+VtVKucjgqdKI+erV6/m3Xff5bXXXuPFF18kMTGRzp07k5iYSEREBAcOHGDr1q2sXr0ar9fLkCFDWLZsGW3atAl2/UJB8qZMYPhdpewZ9SDevH00/Pd/sdVLDMhxJR91hVI2zpat0UtLcGduxxmAfcld2zYD4GiSccbHqg77kea8aOd26NW7Rp/7TFTcc16+l9qRz6m45VYgVHbuLNnm5cXvXRw8svBx/TiNpy910jzJfKPO5Vbs9NEhzWqKpjaUrmuhxgzZNG9g5f2bIvl8jodPZnmYv8nHQ0OdpNZV/42pM2WGfETgVelfts1m495772XHjh2MHTuWIUOGsGPHDiZNmsRnn33GvHnzqF27Nk8++SSbN2/m+++/l8Y8jK1bF9j7TMOR7vOy9/kncW3eQPJzb+BoFLhRO8lHXaGUTUTzVmCxULo+MFPbSzeswxJXG1tiUkCOV1XWOvFoTie569bU6POesYpt7LQ//x/gre1UcrJzZ+MeH0+Oc9EsycrXd0Tyyd8jiYvUeOibUrLzzfn3UerRWZflp2Mjc7y5EErXtVBjlmwcNo1b+zl487oIDhbr/N8nJUxc7MEf4jOCzJKPCKxqrdZutVoZMWIEI0aMCFY9QoQ9XdfJffNlihbOp8EzrxLR2mRbOAkBWCKjcDRqgmvDWhg8/IyP59q4loiWbWp85FfTNOxJyTgPF9bo854x3X9k1FzjqKFzQ0uqaW6vznOTXKQnWnjmMmfFtkyvXBXBHZ+X8OxEF+/cEIHVov7o89HW7vbj9au/hZoQgdY21cqHN0fy0Sw37/zsZt4mLw8OdVI/LvRH0UX4kH/NIuBGjhxpdAmmduCzDzg0/QcSH3icWmf1DPjxJR91hVo2gVoUTtd1SjesI6KlMTOybA2SaRx9+jskGEE/Mkpu+XPB9pAeOT/RuTN2oYe9BToPD3Ues19yTKTGoxc52ZTjZ+oKb02WGRDLd/qoHQWNEszxpkKoXddCiRmziXRo3HOBk1euiiArX+eWj0qYttJz1PaRocOM+YgzJ825CLjp06cbXYJpHZw4hvzRX1D31ruJHTA4KM8h+agr1LJxtmyDe+d2/CXFZ3QcT9Yu/IcKDWvO7UnJHNyyyZDnPm3+v+5zDroeus35X8+dIpfOmD88DO9iIy3h+Jc6rVOsDGhn4/M5bkpNtkDcip0+Ojaymmb9gFC7roUSM2fTpYmVj26JpHdLG6/96ObxsS7yDofWNc7M+YjTJ825CLhDhw4ZXYIpHZr9M/vff5Pal11NnZHXBO95JB9lhVo2ES1bg9+Pa9PJd/moCteR0Xdni1aBKKva7A1SsBfkm2tkprwRP3paewiPnP/13PlxhReXBy4/237S77m+l53CEpi+0jyj58UunY3Z5rnfHELvuhZKzJ5NdITGg0OdPHuZk017/Nz8YQm/rjXP+XwqZs9HnB5pzkXAJSXV7IJNoaB4+RL2vvIM0f0GUvfvdwX1uSQfdYVaNo5G6WgRkZSuP7PF1Eo3rMXeMA1rTGyAKqsee1IyFp8P34E8Q57/tPj96BxZqV2j7NchvAXR0eeOz68zcbGHfm1s1Is5+cuc5DoW+rSyMm6ReRaWWr3Lh1831/3moXZdCyWhkk3P5jY++XskXZpYeX6yi2cnllJQbI5zujKhko+oHmnORcB17tzZ6BJMxbVlE3uefojI9p2p/88n0CzBPS0lH3WFWjaa1UpEm/aUrFp2Rscx8n5z+HOvc09OtmE1VFf5KL+maRUT20N5WvvR587ynX5yC3WGdT71mrcjutnZc1BnyTZfMMsLmBU7/STEaKTUMceUdgi961ooCaVs4qI0nrwkgicudrJ0h4+bPyph3iZzj6KHUj6i6gLaBeTl5TFnzpxAHlKY0NSpU40uwTQ8e7LJfvx+HClpNBj1Apr95FMwA0XyUVcoZhPVsQslq1eie0/vRZLuduPaugmngc25PakBAN49WYbVUG3+o6e1/+VzIejoc2f6Sg9pdTVaJZ/6JU7LZAvpiRamLDfHi/jlO310MtH95hCa17VQEYrZ9G1dNoreooGFUeNcPDmulL0F5rz2hWI+4tQC2pzPnj2bvn37BvKQQoQs38F8sh+9F0tEJA2efwNLlLlWgxaiKiLbd0YvLTnt+85dWzeB11t2/7pBLJFReCIi8ewxz8h5xbZp2lHLtZtk6vaZKPXozN/kY2A7W5UaWE3TGNzBxh9bfMpPgz1UorMlx0/HRjLpUYjK1I228NxIJ6MucbIx289NH5YweoEbj0/tc1wIkGntIgi6detmdAnK85cUk/3EP/EXHSb5xTex1YmvseeWfNQVitk4m7dEi4yieOXS0/r+0nWr0ewOnOnNAlxZ9dgbpJhsWnv5SNFRq7WH8Mh5+bmzdLsPlxd6tTj1lPZy57WyousoPwV2ZaYPHXPdbw6heV0LFaGcjaZpnNfKxuf/F8nQTjY+ne3h1o9LWLHTHLewQGjnI05OmnMRcKWlpUaXoDTd6yXn2cdxZ+6gwQv/xp7csEafX/JRVyhmo9lsRLbtQMnK07vvvGTVciLatKuRWz4q46sTb66R8/LF344MnOuaFtIj5+XnzvxNPtLqaqTWrfrLm/hoC+3TLPy2Xu0X7St2+mhQW6N+nLleuoXidS1UhEM2UU6N2/s7+eDmSGIiNf75dSlPjy8l64D6b1aGQz7ieOa6wgtTWL16tdElKEvXdXLfeIHi5Ytp8NSLRDRrWeM1SD7qCtVsIjt0pnTtSnSPp1rfp/v9lKxeQWR74xfF2evT8eaY6J5z3Y9fs2CxaFg00LGE9D3nq1evxufXWbDZyznNqz5qXu68ljaW7VB7avuKnT46mGgLtXKhel0LBeGUTUaihTevi+DRi5xsODLV/f1fXBwuVfecD6d8xJ+kOReiBuV98h6Hfp5K/QdHEdXlLKPLEaJGRHbsgl5aSumm9dX6Pvf2rfgPFRLZvlOQKqs6V0wc3v370N1uo0upEt3nx69ZsR5pzn2aNaRHzgHW7vZTUAI9m1e/gS2fBj93o5pT2/OLdLbv0+lkwuZcCFVYNI3+bW18flsk1/WyM2W5l+veL2bSEg9euR9dKKJKby9PmDChSgf7448/zqgYERouueQSo0tQ0sEJYzg45n8k3HYvMf0GGlaH5KOuUM3G2bQ5lqhalKxYQmSb9lX+vpIVS8ruN29l3Ert5bpdOIT9c3/Bk5uDo2Ga0eWcmu7HjwWrtaw592uWkN5K7ZJLLuGzuV7ia2m0rMIq7X8VH63RIc3C7PVehnQy9haKE1l55D5ZMy4GF6rXtVAQrtlE2DWu7eXgwo42PvvNwzsz3Exa4uGmPg7ObaHObgjhmk+4q1Jzftlll6FpWsW+qZWp7j/oX3/9la+++or58+eza9cuateuTdeuXRk1ahRdunSp1rGEGmbPns2gQYOMLkMph2b/zP4P3qT2yGuofelVhtYi+agrVLPRrDYiO3WleNEC4q+5qcrfV7T4DyLad8LicAaxuqpZsmMnjQHPnixzNOd+Hb9m/XNau2YBX+g257Nnz2bB9t70aGbFcpovrM9rZeOtn9wUlujERqrx4rzcip0+UuM1EmLM15yH6nUtFIR7NnWjLTwwxMklXW3891c3/5rgolmShRvPs9M93fgmPdzzCVdVas5nzZoVtALef/998vLyuPfee2ndujX79u3j9ddf5+yzz+ann36iX79+QXtuERz5+flGl6CU4uVL2PvKM8T0u4C6t9xpdDmSj8JCOZtaZ59L7hvP480/UKXdCfylpZSuWk7dW+6ogepObZ/HR2OrFa9ZVmw/+p5zS9nIOSE8cp6ZW0pWvs6t/U5/2vfZTa28OR2WbPPRr03171sPpvL9zc0olK9rZifZlMmob+WVqyJZudPHp7+5eWyMi7YNLdx0nsPQdR4kn/BUpZ8+5513XtAKePfdd0lMTDzmc4MGDaJp06a88MIL0pybUEJCgtElKKN043r2PP0Qke07k/jPx9Esxo96SD7qCuVsos7qCUDxovnEXjD0lI8vWbkU3eMmqluPYJdWJQmJidjrNzDNiu36kebcagGrpuPHEtJbqR2yNUEDOqSd/gvperEW0hMtLNqqVnO+75Cf3Qd0bjrPnM15KF/XzE6yOVaHRlbevC6CRdt8fDrbwz++LqVLk7ImvWVyzZ9/kk94qvJPn5KSEiZNmsTOnTupV68eF110EfXq1TvjAv7amANER0fTunVrdu3adcbHFzWvRw81XkwbzbV9C9mP3oujUToNRr1g+FZQ5SQfdYVyNrY68US0asvh32dVqTkvmvcbtgYp2BWZQt6jRw8KfvkBzx6TrNh+9LR2C3hDfEG4YmcGTZMsxJzhdPSzMqxMXeHBrztOe3p8oK3YWfamypm88WCkUL6umZ1kczxN0zgrw0a3dCu/b/Dx+Rw3d35eSs9mVq4/106zpJo7DyWf8FSlYbzs7GzatWvHtddey2OPPcbf//53mjdvHrQF4AoKCli2bBlt2hi/CJCovh9++MHoEgzn3p1J9sP3YEtMIvmFf2OJqmV0SRUkH3WFejbRfQdSvOQPfIUFlT5O93o5PO83os873/B7/sr98MMP2BukmGxauxWrBlYN/Jo1ZLdS03WdRVtKAzLtu3uGlYIS2LRHnb+rFTt9NKmnUbuWGudCdYX6dc3MJJuTs2ga57Wy8fHfI3l4mIMd+/3c9mkpT40rZWtuzVwfJJ/wVKXm/IknniArK4snnniCH3/8kTfffBOHw8Htt98elKLuvPNOioqKePzxxyt9XGFh4TEfLpcrKPUIUR2enGyyH7oLa2wcKS/9B2t0jNElCaGE6PP6gQ6H5/xa6eNKVizFX1hAzHnn11BlVWNPaoAnO6tKi6MaTffrFdPaLZp2ZLV29es+HbsP6BT7IunY+MxvG2rT0EJ0BCzc4gtAZYGxcqePjia931wIs7NaNAa2s/P5/0Xy4FAHW3P93PpxCf+aUMr2GmrShbFcLtdxPWcwVWla+88//8xjjz3Gk08+CcCFF15IRkYGF110EXv37qV+/foBK+jJJ5/k66+/5u233z7lau2pqanH/H7EiBHccccddO/enSlTpgDQuXNn/H4/K1asAGD48OHMnTuXvLw84uPj6d27N5MmTQKgffv22O12li5dCsCQIUNYsmQJe/fuJTY2loEDBzJu3DgA2rRpQ3R0NAsXLgTgggsuYM2aNWRlZVGrVi2GDh3KmDFjAGjRogUJCQnMmzcPgP79+7Np0yYyMzNxOp2MGDGCMWPG4Pf7ycjIICUlhTlz5gDQp08fMjMz2bZtGzabjZEjRzJ+/HjcbjeNGjUiIyODX38te6Hbq1cvcnNz2bRpEwBXXXUVkydPpri4mIYNG9K6dWtmzJgBHJmiWVDAunXrABg5ciTTp0/n0KFDJCUl0blzZ6ZOnQpAt27dKC0tZfXq1UDZ1g6zZ88mPz+fhIQEevToUfHuXqdOnahXrx6jR48GYNiwYSxYsID9+/dTp04d+vTpw8SJEwFo164dERERLF68GIDBgwezbNkycnJyiImJYdCgQYwdOxaA1q1bExcXx4IFCwAYOHAg69atY/fu3URFRTF8+PCK52zevDmJiYnMnTsXgH79+rF161Z27tyJw+Hg0ksvZezYsXi9XtLT00lLS2P27NkA9O7dm6ysLLZu3YrFYuGKK65gwoQJuFwu0tLSaN68Ob/88gsA55xzDvv372fjxo0AXHHFFUz/djRpY7/AZreT8OizfDdtOgBnnXUWhw8fZu3atUDZDggzZsygsLCQ+vXr07VrV3788UcAunTpgsfjYdWqVQBcfPHFzJkzhwMHDlC3bl169erF5MmTAejYsSMWi4Vly5YBMHToUBYtWkRubi5xcXGcf/75FVshtm3blqioKA4fPszo0aO58MILWblyJdnZ2URHRzN48GC+++47AFq2bEl8fDzz588HYMCAAWzYsIFdu3YRGRnJxRdfzLfffouu6zRr1oykpCR+//13APr27cuOHTvYvn07drudyy67jHHjxuHxeGjSpAmNGzeuWGTy3HPPJScnh82bN6NpGldeeSWTJk2ipKSE1NRUWrZsyc8//wxAz549OXDgABs2bADg8ssvZ+rUqRw+fJjk5GQ6dOjAtGnTAOjevTvFxcWsWbOm4towc+ZMCgoKSExMVPYaUZ5NKF8jurRsQ+6EMUwtLAFNO+E1YvWH7xIVW5vNJW4itmxR4hpx+PBhFu7bQ9PiIpb8Npste3JO6xoxZcoUioqKSElJoW3btvz0009BuUYsXbIYv3MAuXtzKC314tcsTPvxR86//oZTXiMWLVoEYJprxEfjN6HRjjg9m+XL8874GpEa1ZMFm+riyBpv+DXi46++Z8/BAcT6dpKZGWHK1xGHDx9my5Yt1XodAbB8+XIg/F5H1NQ1YvLkyRw+fJj169dX+3WE2a4RgXod4d89kwtrF5JTpzWLs9K55WMv6bWyuaanlfrR7oBfI+rUqcO2bduk1zD4GvHmm29WeVvxQND0KryVbrfb+eWXX45ZGK6oqIiYmBhWrFhB+/ZV37e2Mv/61794+umnef7553nsscdO+rjCwkLi4uLYtWsXsbGxFZ93Op04ncZvuRPuNmzYQMuWLY0uo8Z58/PI+ucd6KWlpPz7A+z1Gxhd0gmFaz5mEA7ZFC2cz54n/kHKfz4isnW7477uPZDHjmuGk/D3u6g94koDKjyxDRs20NgCu++8gYbvfEZEi1ZGl1SpgxPGcNn6wdw3OIJla/LJWbWJf99WH2dGM6NLC7hnJ5ayc28xH9926l0AqmLGag8v/+Bm3L1R1DF4Kvn0lR5e+9HNxPujzvh+eqOEw3XNrCSb0+fx6fy0ysvX8zzsK9Tp18bKdb0cpNYN3MK/ko8aXC7XMbOzCwsLSU1NpaCg4Jg+NFCq9C/I5/MRGRl5zOciIiIA8Hq9ASmkvDF/+umnK23MjxYbG3vMhzTmaih/JyucePP2k/XPO/AXFZH8ytvKNuYQnvmYRThkE9XtbOzJDTn43Vcn/HrB9+PRrFZiBgyu4coqt3z5cuzJKQB49uw2uJpT8/l86JoFiwYWLXS3UtN1nRU7fcT5dgbsmF2blE0hX7bD+Knty3f6aBaAhe6MFA7XNbOSbE6f3aoxtJOdL26L5J4LHKzM9HPThyW89L2LrAOBudZKPmpwOp3H9ZzBVOXV2jdu3IjN9ufDfb6yH1rlU0OO1rlz52oV8eyzz/L000/zxBNP8NRTT1Xre4Uwmnd/LlkP3oW/tISU19/Docjq0kKoSLNYiL/uZva+/C9K1qwksm2Hiq95D+RxcPxo4i66DGtMcH/4nQ5rdAyWmFg82eqv2O4/MifOain7KNtKLfTuOc/O1zlYDPXr5wXsmPHRFjISLSze5uN8A7dUK3vjwU+/1ups6yaEOJbDpnFRFzuDOtj4cbmX0Qs8zFzrZUA7G9eeYye5jvFb6ApzqfIV/4Ybbjjh56+77rqKX+u6jqZpFY17Vbz++uuMGjWKQYMGMWTIkONWgD/77LOrfCyhhmHDhhldQo3x5OaQ/eBd6F4vDV9/H3tyQ6NLOqVwysdswiWb6H4XcHDCGHLfeIGGb3+CtVY0ut/PvrdeQbPbqXPV34wu8Tjl2dgbpJhiOzW/r6wRt1i0IyPn1pAcOV+fXfZnum54YF8rdEm38stqb8XrGiPsPqCz/5BOx0bmfnEfLtc1M5JsAsdh07ikm53BHW1MOdKk/7LGy8AjTXpS7eqfx5JPeKpSc/7ZZ58FrYDym/unT5/O9OnTj/t6qK4uG8oWLFjAgAEDjC4j6Dw52WQ9eCegkfL6e9iTko0uqUrCJR8zCpdsNIuF+o89w+67biL7kXuIv+oGDs3+haL5c2jw9MtKjpqXZ2NPTsFrhua8fORcK2vQdc0CvtBrzjdk+0iJ11izfD4NAnjudGti5bs/PGzfp5OeaExzvnyHD6sF2qWae6X2cLmumZFkE3hOu8al3e0M6WTj+2VexixwM2O1l0HtbVxzjp36cVVv0iWf8FSl5vxvfwveKEb56pYidOzfv9/oEoLOk72brAfvQrPZSH71XeyJgduxINjCIR+zCqdsHA3TSH7hTfa++gx7nnoIS2wc9R8aRa2evY0u7YTKs7E3SKF07WqDqzk135Hu3KKVTWv3aVb0EB05b9nAEvBzp22qBacNlmzzkZ5ozMj1sh0+WiVbiHKa935zCK/rmtlINsETYde4/Cw7wzrZmLzUw3d/ePhplZfBHW1c3dNOvdhTX1ckn/AkNzKJgKtTp47RJQSVa8smsh+7D0utaFJefQdbQqLRJVVLqOdjZuGWTUTrtqR9/A2+AwewxMRiObLQqIrKs7EnN8S7Pxfd7UZzOAyu6uTKB8mtlqNGzkOsOXd7dbbu9dO/jYPIvMCeOw6bRvs0K0u2e7n8bHtAj10VPn/ZQneXdK355w60cLuumYlkE3yRDo0rezgY3sXOpCUexiz0MG2llyEdbVzV005CzMmbdMknPJn7RiahpD59+hhdQtCUrFxG1j9vx1avPg3//V/TNeYQ2vmYXThmo1lt2OolKt2Yw5/Z2BukgK7jyck2tqBT8B/pwy2Wsg8/lj/nuoeIbbl+PD5olWIJyrnTLd3Kqkw/pZ6a/3vbutfPoVLo3MTcU9ohPK9rZiHZ1JxIh8ZVPR18fUcU1/Wy88taL9e+V8K7P7s4cPjEb5xKPuFJmnMRcBMnTjS6hKA4PO83sh+9D2eLVqS8+g7W2uZ8RzNU8wkFko26yrOxNSjfTk3t+879+lHT2o9spRZq09rXZ/mxWyE90RKUc6dLEyseH6zeVfNbqi3d4SPCDi2Tzf8yTa5r6pJsal4tp8Y155Q16Vf3tPPTqrIm/f1fXBw4fOwbgZJPeDL/VV+IGlA47XtynnmUWj3OJfm5N7BE1TK6JCGEAWwJ9dDsDjzZau91fvTIudWila3WHmIj5+uzfWTUt+CwBeee7EYJGvViNBZvq/nmfPkOHx3SrNit5r7fXAhxYtERGtef6+CbO6O4/Gw7U1d4ue79Yv77q5uDRaF1rRbVI/eci4Br166d0SUEjK7r5H/zOQc+/y+xw0ZQ785/olnNPc0wlPIJNZKNusqz0SwWbEkN8OxRfFr7kZHzstXay0bOQ+2e8w3ZfrpnlF2Pg3HuaJpGl3QrS2u4OXd7dVbv8nPTeequaVAdcl1Tl2RjvOgIjRt6OxjRzc64hR4mLPHw/VIPI8+y065Ve6PLEwaQ5lwEXITi945Wle52k/vmSxz6eSrx1/+dOtfeZNh+t4EUKvmEIslGXUdnY09uiGeP2iPn3iP9pNWiYQnBkfPCEp2sfJ2WyWXNebDOnW5NrExf6WXfIT/1Klm4KZDW7vbj9obG/eYg1zWVSTbqiI3UuKmPg0u72/n2Dw/fLvAw2Z7KTX4PgzvasFrM//pTVI1MaxcBt3jxYqNLOGO+wgKyHrmXQ7N/pv4jTxN/3c0h0ZhDaOQTqiQbdR2djb1BCp5sxe85L5/Wrh2Z1k5o3XO+Ibvs3YdWR+7JDta506mxFQ1qdPR82Q4ftaOgST35mSOCS7JRT1yUxv/1c/DFbZEkWrN5c7qbWz4qYcFmL7oeOm+wipOT5lyIv3DvzmT33TfjztxOyitvE3P+IKNLEkIoxN4gBe+ebHS/us1u+SC55chWaqE2cr4h209MJCTXCW4DGxel0byBhSXba645X77DR6fGViwh8oawEKL66sdZ6JO4nPdviqButMYTY1388+tSNu2p+TUwRM2S5lwE3ODBg40u4bSVrFzG7ntuAauV1Lc+JrJtR6NLCjgz5xPqJBt1HZ2NPTkF3ePGl7ffwIoq5/cftVq79cg95/7QeVG3PttPywbWihlNwTx3uqVbWbrdh68G3tw4XKqzcY+fTo1DY0o7yHVNZZKN2gYPHkzzJCuvXh3BC5c7OVisc/tnpbwwuZScg+q+OSzOjDTnIuCWLVtmdAnVpus6ByeNJevhu3FmNKPhfz7CntzQ6LKCwoz5hAvJRl1HZ2M3wXZqPr2sabVWrNZuCZkpkbqusyHbVzGlHYJ77nRpYqWwBLbsDf6L4RU7ffh16BxCzblc19Ql2aitPB9N0zirqY2PbonkHxc6WL7Dzw3/LeG/M90cKgmN67r4kzTnIuBycnKMLqFa/G4Xua89x/53XyfuostIfvE/WGNijS4raMyWTziRbNR1dDa2BsmgaUrfd378tHbLnzeim9yegzqFJdAy5c+XMME8d1qnWIhywJIauO980VYfDeM1GtQOnZdncl1Tl2Sjtr/mY7VoDOlk58vbI7m6p53vl3m47oNixi/y4PFJkx4qQufqL5QRExNjdAlV5sndS9b9t3F49i8kPvQU9e64H80W2psYmCmfcCPZqOvobCwOJ7aEekqv2H7sVmoaOtaQ2UptfXbZn6Nlgz9Hl4N57tisGh0bW4PenOu6zuJtPs7KCJ1Rc5DrmsokG7WdLJ9IR9ke6f+7PZLeLWx8MNPNTR+WMGeDLBoXCqQ5FwE3aJA5FlArWbmM3XfegO9gPilv/pfYARcaXVKNMEs+4UiyUddfs7Elqb1iu99fNq3dopVtpeYLoQXh1mf5SK6jERf154JpwT53ujWxsjbLT7EreH+HO/bp5BbqFXu3hwq5rqlLslHbqfKJj7bwj8FOPrw5kobxFv41wcV9/ytlfVborC8SjqQ5FwE3duxYo0uolK7rHJw4hqyH7sbROJ3Udz8jollLo8uqMarnE84kG3X9NRt7corS95x7j5rWbqu45zw0Rs43ZPuPud8cgn/udE234vOX3RMeLIu2eYmwQ/u00GrO5bqmLslGbVXNp0mihReviODlqyIodsNdX5Ty7MRS9siicaYkzbkIK/6iIvY+9wT73/s3cZeMJPml/2CtXcfosoQQJlO217nK09rL/m8pn9auWUJi5Nzj09my10/L5JptYJPrWGhQWwvqlmqLtvro0MiKwyZbqAkhqq9rEysf3BTBg0McrN7l50ZZNM6UQvvmWmGI1q1bG13CCbm2bCLn2cfwHcwn6ckXiO7dz+iSDKFqPkKyUdlfs7EnN8R/qBDf4UNYo9W7b7N8KzWrBSxW0DUL/hBYEG7rXj8eH7T8y8h5TZw73dKDd995kUtn9S4/dw5wBOX4RpLrmrokG7WdTj5Wi8agDnbOa2Vj3CIP3y7wMG2Vh+vOcXBRFxt2q7z5pzoZORcBFxcXZ3QJx9B1nYIpE9l9zy1YoqJo+N7nYduYg3r5iD9JNur6azb2ZLW3U/Mfs5Va2Y96Xwjchrgh24/NAk3rH/vypSbOnS5NrGTl62TnB/5NjmXbffj8hNz95iDXNZVJNmo7k3wiHRrX9ZJF48xImnMRcAsWLDC6hAr+kmL2vvQU+/7zMjGDhpLyn49wpKQaXZahVMpHHEuyUddfs7EnNwTAk7XLiHJOqXyQ3KKB5chIiT8EXpCtz/aRUd9y3NTvmjh3OjW2YtFgaRCmts/b5KNxQmhtoVZOrmvqkmzUFoh8ZNE48wm9nwJCHOHavoVdd95I0YK51H/sWRLveQiLw2l0WUKIEGCNicVauw6e3Wo25z6OrNZuAWt5c+4z/7T29SdYDK6m1HJqtE6xBHxqu9ens2CLl14t5E5DIURwyKJx5iHNuQi4gQMHGvr8uq5T8OMkdt99M5rNRuq7nxHTd4ChNanE6HzEyUk26jpRNvaUVDy7Mw2o5tR8RwbJrUe2UgPwmXxBuMISnawDOi1Tjp/6XVPnTrd0K8t3+gL6d7ki08/hUji3ZehNaQe5rqlMslFbMPKRRePUJ825CLh169YZ9ty+wgJynnmUfW++REz/C2n49ic4UhsZVo+KjMxHVE6yUdeJsrE3TMOdpWZzrutHjZwfac7Nvh7cxj1lI9YtGxz/0qWmzp2u6VaKXLAuK3B/mXM3eEmK08hIDM2XZHJdU5dko7Zg5VO+aNwXt0VyzTl2vl/m4boPihm/yIPHJ0260ULzJ4Ew1O7dxmwvVLJqObtuu46SlctIGvUiifc9gsUZYUgtKjMqH3Fqko26TpSNo2Eanl2ZSi6uc8xWakduzzb7yPn6LD8xEdAw/vjVhmvq3GmWZCG+lsbvG70BOZ5f15m3yUevFlY0LTRXUZbrmrokG7UFO5+TLRo3a503JNYoMStpzkXARUVF1ejz6T4veV98RNaDd2JLSiH1g/8RfW7fGq3BTGo6H1F1ko26TpSNPSUVf9FhfAfzDaiocr6jVms/slh7xfZqZrUhu2x/8xM1sTV17lgtGue2tPL7Bl9AXryuz/JzoEjn3BC+31yua+qSbNRWU/kcvWhcaryF5ya5uO2TUhZslpXdjSDNuQi44cOH19hzefbuIeufd5D/zefEX3cLKa++gz2xfo09vxnVZD6ieiQbdZ0oG3vDNAA8Ck5t9x01cm498pPezOvB6brOhmzfcfubl6vJc+e8ljZyC3U2ZJ/5X+isdV7ia2m0Sgndl2NyXVOXZKO2ms6nSaKFF66I4D/XRVDLCU+MdXHPl6Ws2Ckru9ek0P1pIAwzevToGnmeQ7/9wq7/uw7v/lxS3nif+GtvQrOG5oI6gVRT+Yjqk2zUdaJs7MkpoGlKrthePkhutcCRxdpNPU1xz0GdghJO2pzX5LnTNtVCnVoas9ef2dR2j09n5lov/dvaKtYFCEVyXVOXZKM2o/Jpm2rljWsjePlKJz4//PPrUh78poQN2dKk14TQnUclQpa/pIT9771B4fQfiO7Tn3r3Pow1OsbosoQQYcbijMCWWB+3giu2H70gnEUrX63dvA1g+Sh1ywbGvwFrtWic26Jsavtt5+sVf7/VtXCLj8ISGNhOXooJIdSiaRpd0210aWJl3iYfn/7m5s7PS+nZ3MqNvR2kh+gCliqQnwgi4Jo3bx60Y7u2bCTnhVF49+0l8Z+PE3PB0JBdRCdYgpmPODOSjbpOlo29YSMlt1P7c1q7FhL3nK/P9tGgtkbtWie+3tf0udOnlY3vl3lZn+WnTcPTe8Pgp1VemidZaBLiL3LluqYuyUZtKuSjaRq9Wtjo0czKr+t8fDHHza0fl9C3tZVrznHQuF5oX7+MIH+jIuASExMDfkzd5yP/2y/ZdffNWJxOUt/7gthBw6QxPw3ByEcEhmSjrpNl42iYiidLvWntPl3DopeNNpffc27i3pz12X5anWRKO9T8udM21UJCjMbPq09vant+kc7CrT4uaB/6YyRyXVOXZKM2lfKxWjQGtLXx+f9Fcu8gB2t2+7nloxKenVjKtlwTL2iiIGnORcDNnTs3oMfz5GST9eCd5H36PnUuu4aGb8ne5Wci0PmIwJFs1HWybOwN0/Bk7Ub3qXUvno6GhbIXTOW3M5t15Nzj09mSU7ZS+8nU9LljtWhc0M7Gr+u8lHqq//c6c60XDejbOvSbc7muqUuyUZuK+disGsM62/ny9kjuv9DBhmw/f/+4hKfHl7Jlr1o/B81KmnOhLF3XKfx5Gpn/dy3e3BxSXn+fujffjma3G12aEEIAYE9JQ/e48e7ba3Qpx/DpGlaOHTk362rt23L9eHwnXwzOKIM62ChywW/VXBjO59eZvNTDuS2txEXJ7C8hhPnYrRpDOtn54rZIHhziYGuun//7pJQnx5aycY806WdCrZ90IiT069fvjI/hKyxg73NPkPvKv4g+pw+p//2KyHYdz7w4EZB8RHBINuo6WTaOI9upuXepdd+5XweNshHd8pFzn8+cI+frs/zYLNAs6eQvWYw4d5LrWOiWbmXC4urtBfzHFh/Z+TqXdQ+PN5rluqYuyUZtZsjHZtUY1MHO5/8XySPDHGTm+bnjs1IeHVPKqkyf7JN+GqQ5FwG3devWM/r+4mWLyLz1WoqXLybpieep/9AorLWiA1SdONN8RPBINuo6WTa2xPpoTieezO01XFHl/LoFS3lzXnHPuTlHaTdk+8mob8FhO3n9Rp07l3a3sWWvn1WZVZuWoOs6o+d7aNPQUuk0/VAi1zV1STZqM1M+VovGgHZ2Pr01kseGO9lX6Of+r0q5+8tS5m70mnorz5omzbkIuJ07d57W9/ldpex7799kP3wPjkaNSfvwK6LPOz/A1YnTzUcEn2SjrpNlo1mtOFIb4d6pWHMOWLQj09qPLJxp1hdHG7J9tGhQ+csVo86drk2sNKmn8b+57io9fvE2H+uz/VzfKzxGzUGuayqTbNRmxnysFo3z29j46JZInr/cic0CT413cfOHJUxf6cFj0hlcNUmacxFwDoej2t/j2rqZ3XfdROGUiSTcfj/JL/4HW4I6q1SGktPJR9QMyUZdlWXjaJSuXHNeds/5sSPnZrzn/FCJzq4DOq1SKn+5YtS5o2kaN/R2sHynn2XbK7/P0ufX+fBXN20bWujSJDxGzUGuayqTbNRm5nw0TePspjbevC6St66PoGFdC6/+6Oba90r4bqGHYpc06ScjzbkIuEsvvbTKj9V9PvLH/I9dd90IFisN3/2M2iOuQLPIP81gqU4+omZJNuqqLBt7oya4d25X6t46/4lWa1envCorX1io1SmmgBt57pzT3ErrFAtvz3Dh9p78L3niEi879uncOdARVtuAynVNXZKN2kIlnzYNrTx7WQSf/D2SLk2sfDzLzVXvFvPJbDd5h034rnGQSQckAm7s2LFVepx7dyZZ/7iNvE/eo/aIK0h9+xOcTTKCXJ2oaj6i5kk26qosG2ejJviLDuPL21eDFVVO17WKe84r9jk34Wugtbv9xERCw/jKm1kjzx1N07j/QidZ+Tqfz/Gc8DFb9vr4eJabi7vaaJ4UPqPmINc1lUk2agu1fBrXs/DQUCdf3xHJoPY2Ji7xcPU7Jbz0g4vNObLCe7nQ32BT1Divt/JtZXS/n4JJY8n79D1sdeuR8sYHRLbtUEPViVPlI4wj2airsmzsjZoA4N65XZnbcXz82ZxXrNZuwpHzdVl+WidbTznSbPS5k55o4Za+Dv47001yHY2hnf68pzzrgJ/Hv3PRKMHCrf3MO031dBmdjTg5yUZtoZpPvVgLt/d3cl0vB1NXepm42MPPq710SLMwopudHs2sWC3hM7vor6Q5FwGXnp5+0q95snez97XnKF29griLL6fuTbdjiYyswepEZfkIY0k26qosG3tSMprDiXvndqK6nFWDVZ2cX9ewaH8ZOTdZc+7XddZn+7j8rFMvnqbCuTOyu409+X7+Pc3N6l0+zm1hY+d+P2P+8BBfS+OFK5yVrjgfqlTIRpyYZKO2UM8nOkLj8rPsXNrNxtyNPsYv9vDUeBfJdTQu6WpnUHsbUc7wu2ZKcy4CLi0t7bjP6X4/BT9MIO/jd7DWjifltfeI7NDZgOrEifIRapBs1FVZNprViiNNrRXb/Ry/IJzZmvPM/TpFLmidcupp4CqcO5qmcc8FDjLqW/hqrodf1riIsMP5bWz8va+DmMjwe5EJamQjTkyyUVu45GO1aJzXysZ5rWxsyPYxfpGHD2a6+XyOmws72Likq52k2uFzJ7bhf9JDhw7x0EMPMXDgQOrVq4emaTz99NNGlyXOwOzZs4/5vScnm+yH72H/O68RO2AIaR9+JY25gf6aj1CHZKOuU2Vjb9QE945tNVNMFfjR0LTyae1lTaHZVmtfm+XDokHL5FO/VFHl3NG0sint39wVyfh7o5h4fxT/GOwM28Yc1MlGHE+yUVs45tMy2crjF0fw9R2RXNTZzk+rvFz3fglPjStl2XafUguvBovhzXleXh4ffvghLpeLiy++2OhyRADpuk7Bj5PIvPVaPNm7SX75Lerd8yCWyCijSxNCiIByNErHnblDmRcOPt3y58h5+WrtJmvO12X5aVzPYsppjRZNo3YtLSynsQshxJmqF1u2jsfou6K45wIHuw/4eXB0KTd9WMLExR4Ol6rxszYYDJ/W3qhRI/Lz89E0jf379/Pxxx8bXZI4Q71798a9O5N9/3mZkhVLiR08nIRb78FSq5bRpQnK8hFqkmzUdapsHI2a4D98CF/efmwJ9WqoqpPzc4LV2g2s53Ss2+2jfVrVVjaXc0ddko26JBu1ST4Q6dAY1tnO0E42VmX6mbzUw3u/uPl4tpsBbW0M72KnSaLhY80BZfifRtO0sNrvM9TpXi9533zGrluvxZOzh+SX/kPi/Y9KY66QrKwso0sQJyHZqOtU2TgqVmxXY2q7nxMsCOc3z8/aQyU6mXk6rVOq9jJFzh11STbqkmzUJvn8SdM0OjSyMmpEBKPviuTys+zM3+zjlo9LuP9/Jcxe58Vrxi1JTsDw5vxMFBYWHvPhcrmMLimslW5Yy647byDy5x+Ju2QkaR99o8zKxeJPW7duNboEcRKSjbpOlY09KRnN6cS1XY0My0bOy8bKy6e1e030umVddtmet20aVm3kXM4ddUk26pJs1Cb5nFhCjIW/9XbwzZ2RPHmxE4BnJ7m4+t0SvpjjZv+hwM4Tc7lcx/WcwWT4tPYzkZqaeszvR4wYwR133EH37t2ZMmUKAJ07d8bv97NixQoAhg8fzty5c8nLyyM+Pp7evXszadIkANq3b4/dbmfp0qUADBkyhCVLlrB3715iY2MZOHAg48aNA6BNmzZER0ezcOFCAC644ALWrFlDVlYWtWrVYujQoYwZMwaAFi1akJCQwLx58wDo378/mzZtIjMzE6fTyYgRIxgzZgx+v5+MjAxSUlKYM2cOAH369CEzM5Nt27Zhs9kYOXIk48ePx+1206hRIzIyMvj1118B6NWrF7m5uWzatAmAq666ismTJ1NcXEzDhg1p3bo1M2bMAKBHjx4UFBSwbt06AEaOHMn06dM5dOgQSUlJdO7cmalTpwLQrVs3SktLWb16NQCXXHIJs2fPJj8/n4SEBM7q2JFVzz1J/XUrILURSwcMR49OgIkTGTZsGAsWLGD//v3UqVOHPn36MHHiRADatWtHREQEixcvBmDw4MEsW7aMnJwcYmJiGDRoEGPHjgWgdevWxMXFsWDBAgAGDhzIunXr2L17N1FRUQwfPpzRo0cD0Lx5cxITE5k7dy4A/fr1Y+vWrezcuROHw8Gll17K2LFj8Xq9pKenk5aWVrHoRu/evcnKymLr1q1YLBauuOIKJkyYgMvlIi0tjebNm/9/e3ce3lSZ9nH8m6Rp2jRdKNiWshVBlrYUZCsKiAyLLDoCgojAIFTHARWXmfGdGVFwGEdg3BhFRURgRHAYUFEEQRYRESyb7CCyVgoU2tIlbdIsz/tHpVIppUvSHJr7c125kJPknDv8PEnu85zzhLVr1wLQtWtXLly4wOHDhwEYPnw4K1aswGq10qBBAxITE1m9ejUAycnJ5Ofns3//fgCGDh3KmjVryM3NJTo6mo4dO/L5558D0KFDBxwOB3v27AFg0KBBfP3112RlZVG3bl26devG8uXLAWjXrh16vZ6dO3cCcOedd5KamkpGRgbh4eH06tWLjz76CIDExETMZjPp6eksXryY/v37s3v3btLT07FYLAwYMIAlS5YA0KpVKyIjI/n2228B6NOnD4cOHSItLY3g4GAGDRrEhx9+iFKKm266iZiYGDZt2gRAz549OXHiBMePH8doNDJ06FCWLl2Kw+GgadOmxMXFsWHDBgC6d+/O2bNnOXLkCDqdjvvuu49PPvmEwsJCGjVqRKtWrfjyyy8BuPXWW8nKyuLQoUMA3HvvvaxcuZL8/HxiY2Np27Ytq1atAqBz584UFBSwb9++kveGdevWkZOTQ1RUlGbfIy5lU9veI2655RY+++wzAG6++WYAdu3aBXDdvEdcyqa894i29aLJ3b+HLxw6n79H2Iuc2G2FHDx4EDd6oCFnz54jLy/vmu8RqampAD59j/jf6nSC9HEoazbbj137PSI9PZ2TJ0/W+veI6/F7RHp6Oj/++GOtf4+4Hr9HpKenc/DgwUp/j9DCe4Q/fI/Iy8vj2LFjtf49Aqr3PWLq4LtYvm43356KYPG3jVi42UCj4DO0Cj1Jv87RmIOr9x7x2muvlewDNUGntDJ7DXDhwgVuuOEGJk+eXO6M7bm5uYSHh5OWlkZYWFjJcpPJhMlkqoFKBRRP+FawZRPnZ72CKyebyDG/J2LIcHSG6/qYjxBCVEnGzOnY9u2h8ZwPfF0Kk/5vDdn1mjHrz81wuRV9pxXwe+Nahv/5bl+XViF/XlRIYICOF+4N8nUpQgghrhP5NsX6/U5W7HJyNMNNVJiO/m0D6N82gBvCqnbCuN1uL3V2dm5uLo0aNSInJ6dUH+op1/Vp7WFhYaVu0pjXnKLTaZyZ9EfOTH4aY6MmNJ6ziDrDRqIzBNTo0SVReZKPdkk22lWRbEzNWlB06gRuu60GKiqfG33JhHAls7Vr5lB8+VxuxaF0d4WvNwfZd7RMstEuyUbbJJ/KswTp+G0HI7NTgpj1QBAdbzTw360O7p9VyKT/2dhyxImrkh+GJpPpip7Tm2SIU1SK22Yj+8MFZC9ZSECdusQ89yIh3W4vNamfXPuvbZKPdkk22lWRbEzNW4DbRdGJYwS1jK+Bqq7OrdNh+PltWafToVcu3Or6mBDu5AVFQRHEN6jY9eYg+46WSTbaJdlom+RTdTqdjlaxBlrFGvhDr0DW73ey8nsnk/5n54ZQHf1+Hk2PDtfeOLU056JClFJYN2/kwtuv4czKpM69o6hz3xj0QVeecti4cWMfVCgqSvLRLslGuyqSTWDTZqA3YD/6g++bc6Uvma0dQI/iepnIdv9PLvQ6aBVb8S9Nsu9ol2SjXZKNtkk+nhFiKv45trvaG/nhjIvPv3eyNNXBwm8cdG5moF/bAG65yYDRoI0D2JpozletWoXVaiUvLw+AAwcOlEyGMGDAAMxmsy/L83tFaSc5P+sVCnd8h7nzrcROf53ABo2u+vgWLVrUYHWisiQf7ZJstKsi2ehNQQQ2boL9xx9qoKLyuXS//M45gB73dXNa++5TLlrW1xMcWPEvSrLvaJdko12SjbZJPp7Xor6BFvWLR9M3HCgeTX/+IzthwdArIYA7kgJoHq336c98a2Isf/z48QwbNoxx48YB8L///Y9hw4YxbNgwMjIyfFyd/3LlXOT8Gy9x6qH7cZw+Rf3nZ1D/Hy+X25gDJbOQCm2SfLRLstGuimYT2OwmTTTnbjfoLxsF0KNwOV0+rKhilFLsOeUmqXHFT2kH2Xe0TLLRLslG2yQf7wkO1DGgnZE3Hghm7kPB9G9rZONBF394z8bv59pYluog2+qbI9qaGDk/ceKEr0sQl3EX2cn5eAnZi+YDUHfsHwgffC/6QJlwTwghymNq1gLr5o0olwudoXINpie5FRj0vxx/1+PGfR005z9lKTLzFW2baGLsQAghRC0Xd4Oe3/8mkJTbjWw/5uKLPU7mbChi9voikpsb6JcUQHIzAwE1dNq7JppzoQ1KKfK/Wkvm3Fk4z58n/K7BRI5KwRBRp1Lr6dq1q5cqFJ4g+WiXZKNdFc3G1LwlymbDcTqNwMZx3i3qKpS7+BR2w+Uj5zqF0+n2ST2VsedU8fXmiQ0rd2BD9h3tkmy0S7LRNsmnZhn0OpKbB5DcPICcAsWGA05W73Hy3FI7EeZfTnuvF+TdEXU5NC2Kf698x3f89FgK5/75LKZmLWj87iJuePRPlW7Mofj36oV2ST7aJdloV0WzMTW7CcCnp7Yrux2XzoAh4PKRc3BfB8357lMuborRE2Kq3AiF7DvaJdlol2SjbZKP74SbdQzqaOStccHMeTCY3okBrNvv5PdzbTy2oNCr25bm3M8V7tvN6T9NIP0vj4NOR+xLs6j//AwCGzWp8joPHz7swQqFp0k+2iXZaFdFszGEhRMQE4vt8AEvV3R1blshCj16wy8f8Qad9q85V0qx+5SbtpW83hxk39EyyUa7JBttk3y04cYoPeN7m/jvY2ZeuNdEo7rebZ/ltHY/ZfvhEFnz36Zg21YCb7yJ+lNfwpzc1aezEwohRG0QFJ+I7cBen21f2W24fz1yrgO3S9sj5+nZigt5cr25EEII7Qkw6OjSPID4qCD+6c3teHHdQoPsPx4m64N5WL/5CmOjJkRP+geW7r9Bp/fcl6Hhw4d7bF3C8yQf7ZJstKsy2QS1bkP+1+txF9l9MpGm22bDrdNjuGxCOr0eXBpvzr+v4vXmIPuOlkk22iXZaJvk45/k8LSfKDywl/RnniJt/BjsR48Q9adJNJ7zAaE9enu0MQdYsWKFR9cnPEvy0S7JRrsqk01QfBtwOrH/cMiLFV1d8ci5HkPAL02uQQcujf/Q+Y5jxb9vbgmq/Blcsu9ol2SjXZKNtkk+/klGzmsxpRSFu7aTvXg+hd/vILBJU6L/MgXL7b3RGbwXvdVq9dq6RfVJPtol2WhXZbIx3dgcXVAQtoP7CE5s68Wqyua2FRaf1m4sPXLudimU2+3xA7Ke4HIrdp5wMaijsUrPl31HuyQb7ZJstE3y8U/SnNdCyuXCumUT2UsWYj+4D9NNLYl57kVCuvaokS9lDRo08Po2RNVJPtol2WhXZbLRBQRgatHaZ9edK5sdNyGlRs71eh1unR5lt6MLDvZJXeU5fMZNng063Vi134aXfUe7JBvtkmy0TfLxT9Kc1yLuAiu5q1dw8eMlOM+cJqjNzdT/56uYO3ap0YneEhMTa2xbovIkH+2SbLSrstkExbchb83nKKVqfKJNZSvErQtFb/zlI95Q0pzbQIPN+fZjLkJM0Cq2ageQZd/RLslGuyQbbZN8/JP2zm0TlebIOMeFOa9z4v67uTD73wS1TqDhG/No+MpbhHS6pca/GK5evbpGtycqR/LRLslGuyqbTXDrRFxZmTjPnfFSRVfntttQOkPpa8714NYZcNu8+/usVbXtmIv2cQYM+qp9Xsm+o12SjXZJNtom+fgnGTm/TimlsB3cR87HS8j/ej364GDCBg4i/O5hGKOifV2eEEL4taD4NgDYDuzDGBNbo9tWtkJcOgMBvz6tHQPKbq/RWioir1BxKN3NE/0CfV2KEEII4VPSnF9n3IUF5K1bTc5nH1F07AgB9RtQb/zjhN1xJ/pgs6/LAyA5OdnXJYhySD7aJdloV2WzMUTUwdiwMYV7dhH6m75eqqpsbrsdpTdw+RQjeoMet06vyZHznSdcuBV0rOL15iD7jpZJNtol2Wib5OOfpDm/TtiPHyX3s4/IXbcKZbMRktyVug9OwNwhWXMz7+bn5/u6BFEOyUe7JBvtqko25ps7Yd2+1QvVlE/ZCnHrDVx+hrjB8PM15zZbjddzLVt+dNGkno7o8Kp/lsm+o12SjXZJNtom+fgnbXV1ohS3zUbe2lX89OTDpP1+JPmbvyJi8HCavP8R9f/+r+LryTXWmAPs37/f1yWIckg+2iXZaFdVsgnu0BnnmdM4zpz2QkVX57bZcOsCftWc63++5lxbzbnTpdhyxEn3ltUbK5B9R7skG+2SbLRN8vFPMnKuMZeuJc9bvYL8r9biLrAS3K4DMZNeKP4ptACJTAghrgfB7TqA3kDBjlTC7xxcY9tVNhs2QxBm0y/LQoL02Azm4tnaNeT7U27ybdCtZdVPaRdCCCFqC+n0NMJ54Tx5a1eRu+ZzHGknCYiKIXzwcML6DsAY29DX5VXK0KFDfV2CKIfko12SjXZVJRtDiIWgVvEU7KzZ5txps2HTBWEx/TJ0bgk2kB0Qgtt2scbqqIhvDjmJCdfRPLp6Z4HJvqNdko12STbaJvn4J+2dE+1H3AVW8tauIv1vT3Ji5N1kvT8XU4tWxE7/N03e/4i6D/z+umvMAdasWePrEkQ5JB/tkmy0q6rZBHfoTOGu7SiXy8MVXV2B3Y3S6bEEXd6c6ykwhmpq5NzlVnzzg4tuLQ3V/slP2Xe0S7LRLslG2yQf/yQj5zXMXWSnIHUL+Ru+xLr1G1SRnaCEJG6Y+DSW23tjCLH4usRqy83N9XUJohySj3ZJNtpV1WzM7TuT/f5c7D8cJKh1ooerKlt+kQ6CKN2cB+koMIZq6przg6fdZFtVta83B9l3tEyy0S7JRtskH/8kzXkNUC4nhbt2kLdhDdZvvsJdYCWwWQsif/cglp59MEbF+LpEj4qOlt9Z1zLJR7skG+2qajZBrRLQmc0U7EitsebcWtKc/7LMEqSjMMCiqdnavz7kpE6IjviG1T+JT/Yd7ZJstEuy0TbJxz9Jc+4lyuGg4PvtWDdvxLp5I66L2RgbNCJ8yH2E9uxDYOM4X5foNR07dvR1CaIcko92STbaVdVsdAEBmDskY92yichR4zxcVdnyHcUf7Zdfcx4SBIUGM85CbTTnTpdi3X4nvRID0FfzlHaQfUfLJBvtkmy0TfLxT3LNuQe5CwvJ37Sesy8+x/Fh/Tnztycp3LWd0D4DaDhrPo3nLaHumIdqdWMO8Pnnn/u6BFEOyUe7JBvtqk42lq49sP9wEEfGOQ9WdHVWZ/HM56VOa/+5Ubfaa+7a9/J8d9TFxQK4I8nokfXJvqNdko12STbaJvn4Jxk5ryZXbg7Wrd9g3byRgu3foYrsBN7YnIh77iOkaw8Cmzav9kQ3Qgghrl/m5K4QEID1241EDLrX69uzuosb3pDLfkrtUqOeb9fG59EXe5zcFKOnWZSMEQghhBCXSHNeScrtxn70BwpSv6UgdQu2g/tAKYLi2xD5wO+xdO1xXc6w7kkdOnTwdQmiHJKPdkk22lWdbAyWUMw3dyJ/47oaa85NOgcBhssnhPv5Ppvy+vavJduq+O5HFxN6B3psnbLvaJdko12SjbZJPv5JmvMKcFnzKdyRijX1Wwq2bcGVlYnObMbcIZmop/6GudMtBNSt5+syNcPhcPi6BFEOyUe7JBvtqm42ob/py7npz+M4dwZjdH0PVXUl5XJhdRgIMZQ+ff3Sae15eUVe23ZFrdvvRK+DnvGe+woi+452STbaJdlom+Tjn6Q5L4NyOrEd2k/hru0U7NqO7cAecLkIjLuR0N79MHe+leCEtugC5J+vLHv27CEhIcHXZYirkHy0S7LRrupmE9K1B7qgIPLWryFyxBgPVlaaKzuTQkMIoabSI+SXTmv3dXPuciuW73DQraWBcLPnTrGXfUe7JBvtkmy0TfLxT9JdUnyqetGJo8XN+M5tFO79HlVYgD7EQnC7DtzwyFOYO9/q1dEOIYQQtZc+2ExI1x7krV5Bnft+57W5SBwZ5ygIsGAxG0otv3Rae16BE+V2o9P75lrvzT+4SM9WTBrkmYnghBBCiNrEL5tz5XJRdOIYhft2Y9v3PYXf78B1MRtdoImghDZE3v8AwTd3xNS8JTqD4dorFKUMGjTI1yWIckg+2iXZaJcnsgkfMIjT61ZTuHsn5nbeuZbQef4chQEhWEJKN78GvY5gg4tCXTCui9kERNb1yvbLo5RiyVYHbRvraVnfs5+tsu9ol2SjXZKNtkk+/skvpkl1F9kp3Ps9WYsXkP63Jzl+zx2k/WE0F95+Dce5s4T1/y2xM96g6cdraDDjDerc9zuCWsZLY15FX3/9ta9LEOWQfLRLstEuT2QT1KYdxsZx5Hy6zAMVlc2ZcY4CUzihIVceew8JVBQEWHCer5mfdPu1vWluDqa7ubeL50fNZd/RLslGuyQbbZN8/FOtGzlXSuE8dwbb4QPYDx3AdnAfth8OgsOBzmwmOD6JiGH3E5zYDlPLePRBQb4uudbJysrydQmiHJKPdkk22uWJbHQ6HRGDhnH+jZdxnDmNsX4DD1RWmjPjLDZTh1K/cX6JJdhAYYAFZ8ZZaBnv8W1fy6JvHTSuq6NzM88f+JZ9R7skG+2SbLRN8vFP131z7sq5WNyIHz6A7dABbIcP4M65CEBAdAxBLROo91Avgtu0I7BpM3SG6/4la17dujV/uqSoOMlHuyQb7fJUNqF9BpI5/x0uLl3MDY/9ySPrvJzzfAYFRkvZzbnZQKEpDOf5DI9v91q2HXOy7ZiLyUNM6L1wvb3sO9ol2WiXZKNtko9/uq471ZMPjSQ46zwA+rBwglrGE37XPQS1isfUojUBdSJ9XKF/6tatm69LEOWQfLRLstEuT2WjDwoiYshwsj6YR8Tw0Rijoj2y3ktsGRnkNAyjTsiVDXC9UB1nQhvizPjGo9u8FpdbMXtdEYkN9XRv6Z3LxWTf0S7JRrskG22TfPzTdX3NeUiXrkQ/M5Um/1lG06VfEPvPV6k75iFCkrtKY+5Dy5cv93UJohySj3ZJNtrlyWwiBg9Hbw4h+/13PbZOKL6s66fcAJwYuDHqyo/3pjfo+cnUiKKMsx7d7rV8sdvJ8fOK8b0DvTZLvew72iXZaJdko22Sj3+6rpvzeikTCL29D8b6Dbz2gS+EEEJ4kt4cQuTIseSuXoHth0MeW6/zbDppqh5Q3Ij/WtMoPVZ9COd+TEcpdcX93pCR6+adDUX0SQygVaxMsiqEEEKU57puzoU2tWvXztcliHJIPtol2WiXp7MJ/+09BMbdyPmZ01FOp0fWWbh7J6dDm1EvRBEafOUB60sN+0l7GM6zZzyyzfK43Ippn9oJNuqY0CfQq9uSfUe7JBvtkmy0TfLxT9KcC4/T6+V/Ky2TfLRLstEuT2ejMwQQ9dTfsP/4A1mL5nlknYW7d3LmhkRujCl7OpmYCB1BRsVpy40U7t7pkW2WZ8lWB3tOufnLb02ElXGwwJNk39EuyUa7JBttk3z8k6QuPG7nTu9/6RNVJ/lol2SjXd7IJqhVApGjxpK98D2sqd9Wa11KKQp37+B0SFyZp7QD6HU6mkYZSI9pS+Ee7/6/9tUBJ3O/cjDiViPtmnj/dHbZd7RLstEuyUbbJB//JM25EEII4SN1Ro7DnHwrZ1+YhO3wgSqvpyB1C8cKw7jgDiWp8dU/2ts1MbDX0o7szZtx5edVeXvl2X7MyYuf2umVaGBsD6NXtiGEEELURjpVU7PCeFBubi7h4eHk5OQQFhbm63LEr+Tl5REaGurrMsRVSD7aJdlolzezcRcWcPr/JuI4dYL6z88guG37Sj1fKcXpP47nP8G/ZVdUDz58zIxBX/Zp5GmZbh6YXciDh16k38CW1Bk+2hMvocSavQ5eWVlE+zgDfx9qIsBQM5O1yr6jXZKNdkk22ib5aJO3+1BNjJzn5+fzxBNPEBsbS1BQEO3atePDDz/0dVmiilJTU31dgiiH5KNdko12eTMbfbCZ2Bdfw3RTK07/32NkL1mIclV8kric5f/j/KHjfBfeld5tjFdtzAEa1dWT2FDPhvixZC5+H8eZ0554Cdgcije/tDP9syJ6JQQw5Z6aa8xB9h0tk2y0S7LRNsnHP2miOR8yZAgLFixg8uTJrFq1ik6dOjFixAgWLVpU5uPtdnupP4V22O123nzzTclGoyQf7ZJstKsmsjGEWIj956tEDLmPzHdnkTZ+DHlrV6Ecjqs+R7mcZP/vAzLeep0Pe76C3hjAsM5lTwZ3uQd7BnJcRbPixt9x5rk/4zyfUeW63UrxzWEnKe8U8ulOJxN6B/KngYEEBtRcYy77jnZJNtol2Wib5KNd3u5DfX5a+8qVKxk4cCCLFi1ixIgRJcv79u3L/v37OXXqFAZD6clkfvrpJxo1akRaWhoNGzas6ZJFOeSSA22TfLRLstGums7Gdmg/WQvmULB9K4aIOgS3bU9QfBKGyEj0wWacmRdw/HSK/G++4kKmjSU9X2KXozFT7jHRtcW1m3OAhd8UMe9rB7dlrWdQ2n+IGzWC0L4D0JuCKvT883luvjnkYvkOB2lZik43Gni0byANI2v+mL/sO9ol2WiXZKNtko92ebsPrdinuBd9/PHHWCwWhg0bVmr52LFjuf/++/nuu++49dZbfVSdEEIIUbOCWiUQ++JrFJ08Tt7aLyjcs5MLc14HpxM3ejLMDTjVoBO7Wz/Hbl0zgg06pg4y0aV5xT/SR3ULJNys4511PdkSeRutNmzjxpXzaRZjJKpFI+o0iUUf0wBCQnG4dWTmKzJyFEcz3BxKd3Msw41eB91aGnhqgJE2jfTodDU3Wi6EEELURj5vzvft20fr1q0JCChdSlJSUsn90pwL4d/ybQqrveIn+VztfKCrraGy5w95Y/35+WCudxOns+Fikdvj66/I46+6/kquqLJ1Xn39lXu8t/4drFYIa9SJQ2cgJNdVqfW7Fbjc4FLgcitcbnC7f15WxvIiZ/H124UOsBXFUhgzDmvEWLLaKzLz3GRaFQ5XcRPcur6eca0CGNAuAEtQ5Rvju9obua1VAKv3OvnuQEfWnuvAcncgHKf4BsAvp+0ZlJOGXKCp/jwDTem0Cz5HaK4e3eYgckxBYDCgMxhAr0enN4BBj06vB73h5z/1xY+5/M/L7yvzJVzldV12IMBhtXJzuAXH4QMUhoSUsYYy1nG1f66yDjBc9aDDtWu79kPLuqP66y275oqvt1IHWq72WJ0OZ34+Tc1BOE+nUZRjKeffsuLrvmptlXrNFXu+oU4k+kDT1esTQggP83lznpmZyY033njF8sjIyJL7f+3SmfhnzpwptdxkMmEyyZuoL+Xm5pb6U2jL9ZrPh1uK+GDz1a+9rS06jt/IH+ZaAauvSxG/0u6B5fz5A+9mo9dBgAGCjBBs1BEUCEGBOoKNEBmip1mkjroWHY3r6mkapSfcrAMcuIsgt6hq29QB/VpDv9Z63EqRne/gYp6DnPTzuLPOQ14OuvyLhOWfJSTvDDq7DbfdjrLbyLfbySuy4bYV/125XOB2FR9lqGFzb27JqacfrfHtimtb1jmBkxPG+LqMKol98TWC45N8XYZXXK/fB/yF5KMddru91PXll/pPb10Z7vPmHMo/QlvWfY6fJ8jp3Lmz12oS1dOoUSNflyDKIfkIIYQQ13BLd19X4HXyfUDbJB/tcpQzYWt1+Lw5r1u3bpmj41lZWcAvI+iXi4uL4+jRoxiNxlLNu4ycCyGEEEIIIYTwhF+PnCulcDgcxMXFeWV7Pm/O27Rpw+LFi3E6naWuO9+7dy8AiYmJVzxHr9eXeSq8EEIIIYQQQghxPfL575wPHjyY/Px8li1bVmr5ggULiI2NJTk52UeVCSGEEEIIIYQQNcPnI+f9+/enT58+jB8/ntzcXJo3b87ixYv54osvWLhw4RW/cS6EEEIIIYQQQtQ2Ph85B/joo48YPXo0zz77LH369GHx4sWEhoYyatQopkyZUqF1zJ8/H51OV+bt7Nmz3n0BfiAvL4+nn36avn37csMNN6DT6SqczSXLly+nR48ehIWFERISQkJCAu+88453CvYj1cnm9ttvv+p+I/uOZ1R339mwYQN9+vQhKioKi8VCUlIS//73v3G5Kv6TXqJs1c1m9erVdO3aleDgYMLDw7nrrrvYv3+/9wr2I+vXr2fcuHG0atWKkJAQGjRowN13382OHTsq9PyMjAweeOAB6tWrh9ls5pZbbmHdunVerto/VCebn376iSeeeIIePXoQERGBTqdj/vz53i/aT1Qnm48++ogRI0bQvHlzgoODiYuLY+TIkRw5cqQGKvcP1cln7dq19OnTh9jYWEwmE1FRUfzmN79h5cqVNVB57Vfdz5zLTZo0CZ1OV+al2RWhiebcYrEwc+ZMtm7disVioX379gwfPrxK65o3bx5btmwpdatbt66HK/Y/mZmZvPPOO9jtdgYNGlTp50+bNo0hQ4aQmJjIkiVL+PTTT5kwYQJFRVX8/R9RojrZvPnmm1fsL+vWrcNoNNKlSxdiYmK8U7QfqU4+a9eupXfv3jidTubMmcMnn3zC7bffzuOPP85TTz3lnYL9SHWyWb58Of379ycqKoply5bx9ttvc+TIEbp3787Ro0e9U7Afeeuttzhx4gSPP/44K1euZObMmWRkZNClSxfWr19f7nPtdju9evVi3bp1zJw5k+XLlxMdHU2/fv3YuHFjDb2C2qs62fz444988MEHBAYGMmDAgBqq2H9UJ5vp06dTUFDAM888wxdffME//vEPdu3aRfv27eWgo4dUJ5/MzEwSEhJ49dVXWbNmDbNnz8ZoNDJw4EAWLlxYQ6+g9qpONpf7/vvveemll4iOjq56MUpD3G63crvdSimlzp8/rwA1efLkCj133rx5ClDbtm3zYoX+qzrZbN++Xen1ejV9+nQvVui/qpNNWebPn68A9e6773qoQv9WnXxGjhypTCaTys/PL7W8b9++KiwszNOl+p3qZNOyZUuVlJRU8nyllDpx4oQKDAxU999/vzfK9Svnzp27YlleXp6Kjo5WvXr1Kve5s2bNUoD69ttvS5Y5HA4VHx+vOnfu7PFa/U11snG5XCX/vW3bNgWoefPmebpEv1WdbMp67unTp5XRaFQpKSkeq9GfVSefshQVFakGDRqo7t27e6I8v+aJbBwOh2rXrp2aOHGi6tGjh0pISKhSLZoYOb/k0qm0Qnuqk80bb7yByWTiscce83BVAjy/38ydOxeLxVLls1dEadXJx2g0EhgYSHBwcKnlERERBAUFeaI8v1bVbDIzMzl8+DD9+/cv9fwmTZqQmJjIJ598IpcdVFNUVNQVyywWC/Hx8aSlpZX73I8//piWLVtyyy23lCwLCAhg1KhRpKamcvr0aY/X60+qk41er6mvnbVOdbIp67mxsbE0bNjwms8VFVOdfMpiNBqJiIgo9WtXomo8kc20adPIysrihRdeqFYtte5d8s4778RgMBAZGcmQIUPYt2+fr0vye19//TWtW7dm2bJltGzZEoPBQMOGDfnLX/4ip7VrzJEjR9i0aRP33XcfFovF1+X4vT/84Q8UFRUxceJE0tPTuXjxIu+//z4ff/wxTz/9tK/L81uX3rdMJtMV95lMJgoKCuTUdi/Iyclh586dJCQklPu4ffv2kZSUdMXyS8vkFF3Pq2g2ouZVJ5tjx45x8uRJydWLKpuP2+3G6XSSnp7O5MmT+eGHH/jjH//o5Sr9U2WyOXDgAP/4xz946623qv39udYcaomJieGZZ56hS5cuhIWFsXfvXqZNm0aXLl3YvHkzbdu29XWJfuv06dOcP3+eiRMnMnXqVOLj41m3bh3Tpk0jLS2NDz74wNclip/NnTsXgJSUFB9XIgCSk5NZv349w4YNY9asWQAYDAZefPFF+TD2oejoaCIjI9m8eXOp5RcvXiw5IJyZmemL0mq1Rx55BKvVyjPPPFPu4zIzM4mMjLxi+aVlko3nVTQbUfOqmo3T6SQlJQWLxcKTTz7ppepEZfMZMGAAq1evBiAsLIz//ve/DBw40Jsl+q2KZuN2uxk3bhxDhgzxyFwataY579evH/369Sv5+2233cbAgQNp06YNzz33HMuXL/dhdf7N7XaTl5fH4sWLue+++wDo2bMnVquV1157jeeff57mzZv7uErhdDpZsGABCQkJdOnSxdflCGDHjh0MHjyY5ORkZs+eTUhICOvXr2fSpEnYbDaeffZZX5fol/R6PY888ghTp05l6tSpPPzww+Tm5vLEE09QUFBQ8hjhOc8++ywffPABr7/+Oh06dLjm48u7XEEun/OsymYjak5Vs1FKkZKSwqZNm1i2bBmNGjXyYpX+qyr5vP7661y8eJEzZ86wcOFChg8fzoIFCxgxYoSXq/UvlcnmlVde4ciRI3z66aee2XiVrlSvAZ6Y2Eoppfr166eioqI8U5RQSlU+m5iYGAWorKysUstXr16tAPXf//7XC1X6p+rsN8uXL1eAevXVVz1elyhW2XySk5NVmzZtlNPpLLX8ueeeU3q9Xh09etQLVfqnymbjcDjUk08+qQIDAxWgADVw4ED14IMPKkClpaV5t2A/MmXKFAWoF154oUKPj4mJUcOGDbti+YoVKxSgVq9e7ekS/VZls7mcTAjnXVXNxu12q3Hjxim9Xq/ef/99L1UnqrPvXK5fv36qTp06pSZbFNVTmWxOnjypgoOD1cyZM1V2dnbJrWvXrqp169YqOztbFRQUVGr7tf7QvlJKRjB8rKxr/6A4G5ARJq2YO3cugYGBjB492teliJ99//33dOjQAYPBUGp5p06dcLvdHDx40EeViYCAAF555RUyMzPZs2cP6enprFixglOnTtG0aVMaNmzo6xJrheeff54pU6YwZcoU/va3v1XoOW3atGHv3r1XLL+0rKq/PStKq0o2omZUNRulFA8++CDz5s3j3XffZdSoUV6s0n95ct/p3Lkz2dnZnD9/3kPV+bfKZnPs2DEKCwt5/PHHqVOnTslt8+bNHDx4kDp16vDXv/61UjXU6q7o+PHjbN68WU7R9bF77rkHgFWrVpVavnLlSvR6PZ06dfJFWeIyZ8+eZeXKlQwaNIi6dev6uhzxs9jYWLZv337FzN9btmwBkAZQAywWC23atKF+/frs3LmTdevW8fjjj/u6rFph6tSpTJkyhUmTJjF58uQKP2/w4MEcOnSI7777rmSZ0+lk4cKFJCcnExsb641y/UpVsxHeV9VslFI89NBDzJs3j9mzZzN27FgvVum/PLnvKKXYuHEjERER8t3NA6qSTbt27diwYcMVt7Zt2xIXF8eGDRt49NFHK1WH5q45X7VqFVarlby8PKB49rulS5cCxZMgmM1mUlJSWLBgAUePHqVJkyYA9O7dm9tuu42kpKSSCeFmzJiBTqdj6tSpPns9tUlVsxk7diyzZ89mwoQJXLhwgfj4eNauXcusWbOYMGFCyeNE1VU1m0sWLFiA0+nkwQcfrPHa/UFV83nyySeZOHEid911Fw8//DBms5l169bx8ssv07t3b5no0gOqms1XX33Ftm3bSEpKQilFamoq06dPp1+/fpX+IBZXevnll3nuuefo168fAwcOZOvWraXuv3TQvaxsxo0bx6xZsxg2bBjTpk0jKiqKN998k8OHD7N27doafy21TXWyAUr2r2PHjgGwffv2ktmNhw4dWhMvodaqTjYTJ05k7ty5jBs3jjZt2pR6rslk4uabb665F1JLVSefu+++m7Zt29KuXTvq1q1Leno68+fPZ+PGjcyaNUt+Tq2aqppNREQEt99++xXri4iIwOl0lnnfNVX+THzvatKkScn1e7++HT9+XCml1JgxY0r9XSmlnnjiCRUfH69CQ0NVQECAio2NVaNGjVKHDx/2zQuphaqajVJKZWZmqocfflhFR0cro9GoWrRoof71r3/JNTIeUp1slFKqRYsWKi4uTrnd7pot3E9UJ59ly5apbt26qXr16qmQkBCVkJCgpk6dqvLz82v+hdRCVc1m8+bNKjk5WYWFhSmTyaQSExPVSy+9pIqKinzzQmqZHj16XDWXy7+6XG2/OXv2rPrd736nIiMjVVBQkOrSpYv68ssva/hV1E7VzaYizxVVU51synsvbNKkSc2/mFqoOvlMnz5dderUSdWpU0cZDAZVt25ddccdd6gVK1b44JXUPtV9XytrfQkJCVWqRafUzxf+CiGEEEIIIYQQwidq9TXnQgghhBBCCCHE9UCacyGEEEIIIYQQwsekORdCCCGEEEIIIXxMmnMhhBBCCCGEEMLHpDkXQgghhBBCCCF8TJpzIYQQQgghhBDCx6Q5F0IIIYQQQgghfEyacyGEEEIIIYQQwsekORdCCCGEEEIIIXxMmnMhhBDCR6xWK02aNGHEiBHk5+eTn5+P0+mskW3//e9/Jz4+HrfbXannDR48mODgYC5evHjVx4wcORKj0ci5c+eYO3cuDRo0wGq1VrNiIYQQonaT5lwIIYTwgXPnzmGxWDh16hQffvghoaGhhIaGsmbNGq9vOz09nRkzZvD3v/8dvb5yXwVSUlKw2WwsWrSozPtzcnL4+OOPufPOO4mOjmbMmDGEhIQwY8YMT5QuhBBC1FrSnAshhBA+EBISwvTp0wGYO3cumzZtYtOmTfTs2dPr2545cyYREREMGTKk0s/t378/sbGxvPfee2Xev3jxYgoLC0lJSQEgICCAhx9+mJkzZ1JQUFCtuoUQQojaTJpzIYQQwgcsFgsOhwOTyUSnTp147bXXuPPOO2nSpAkPPfQQNput1OPT0tIICwvjscceK3N9OTk56HQ6xo8fX+52i4qKmDt3Lvfff3+Zo+ZHjhzh/vvvJyoqCpPJROvWrZk1a1bJ/QaDgTFjxrBjxw727t17xfPnzZtH/fr16d+/f8mykSNHkpuby4cfflhubUIIIYQ/k+ZcCCGE8JFt27ZhNpsZO3Ysd9xxB8uWLWPo0KG8++67zJ49u9RjJ06cSGBgIC+88EKZ6woPDyc2NpatW7eWu83vvvuOzMzMMkfoDxw4QKdOndi3bx8vv/wyK1asYODAgUycOJHnn3++5HHjxo1Dp9NdMXp+4MABUlNTGTNmDAaDoWR5TEwMrVq14vPPP7/mv4kQQgjhrwJ8XYAQQgjhr7Zt21ZynXlkZCQAt956K3PmzOHIkSMlj0tNTeWTTz7hn//8J2FhYVddX1xcHAcPHix3m1u2bAGgffv2V9z31FNPERoayjfffFOynT59+mC325k2bRoTJ06kTp06NG/enNtuu42FCxcyY8YMjEYjQEmzPm7cuCvW3b59e9auXVtubUIIIYQ/k5FzIYQQwgfOnDlDeno6TzzxREljDqDX63G5XMTExJQse+utt9Dr9aWa3vXr17N48eJS67RarSilyt1ueno6Op2OevXqlVpus9lYt24dgwcPxmw243Q6S24DBgzAZrOVGpVPSUnhwoULfPrppwA4nU4WLlxI9+7duemmm67YblRUFBkZGTU2G70QQghxvZHmXAghhPCBbdu2AdCvX79Sy/fu3YtSiqSkpJJlX375JQkJCURHR5csmzJlCkuXLi313HPnztG8efNyt1tYWIjRaCx12jlAZmYmTqeT119/HaPRWOo2YMAAAC5cuFDy+KFDhxIeHs68efMAWLlyJefOnSuZCO7XgoKCUEpdcS29EEIIIYrJae1CCCGED2zbto2QkBBatmxZavmOHTsA6NChA1DcTJ8+fZpOnTqVPCYrK4utW7fyyCOPlCzbt28fZ8+eZfTo0eVut169ehQVFWG1WgkJCSlZXqdOHQwGA6NHjy613ss1bdq05L+Dg4MZMWIEc+bM4cyZM7z33nuEhoYybNiwMp+blZWFyWTCYrGUW58QQgjhr6Q5F0IIIXxg27Zt3HzzzVfMmL5z506io6Np0KABAC6XC6DUiPPbb7+NwWCgqKioZNnMmTPR6/WMHTu23O22atUKgKNHj5YanTebzfTs2ZNdu3aRlJREYGDgNV9DSkoKb7/9Nv/6179YuXIlDzzwAGazuczHHjt2jPj4+GuuUwghhPBX0pwLIYQQPrB9+3ZGjRp1xfIdO3bQsWPHkr9bLBZatGjB+vXree+99ygqKuKll17i0UcfZdGiRfTv35+vv/6ad999l6eeeorWrVuXu93bb78dgK1bt5ZqzqG4we/WrRvdu3dn/PjxxMXFkZeXx48//shnn33G+vXrSz2+Y8eOJCUl8dprr6GUuuop7W63m9TU1KveL4QQQgi55lwIIYSocceOHSMzM7Pk1PVLHA4He/fuvWL5f/7zH1q2bMmECROYNWsWS5Ys4a9//SvNmzdn6NChLF26lBkzZvDSSy9dc9uNGjWie/fuLF++/Ir74uPj2blzJ4mJiUyaNIm+ffuSkpLC0qVL6dWrV5nrS0lJQSlFfHw8ycnJZT7mq6++Iicnh5EjR16zPiGEEMJf6dS1pnUVQgghRK2ybNkyhg8fzsmTJ0tOn/em0aNHc+zYMTZv3uz1bQkhhBDXK2nOhRBCCD+jlOLWW2+lQ4cOvPHGG17d1tGjR2ndujXr16+nW7duXt2WEEIIcT2T09qFEEIIP6PT6ZgzZw6xsbG43W6vbuvUqVO88cYb0pgLIYQQ1yAj50IIIYQQQgghhI/JyLkQQgghhBBCCOFj0pwLIYQQQgghhBA+Js25EEIIIYQQQgjhY9KcCyGEEEIIIYQQPibNuRBCCCGEEEII4WPSnAshhBBCCCGEED4mzbkQQgghhBBCCOFj0pwLIYQQQgghhBA+Js25EEIIIYQQQgjhY9KcCyGEEEIIIYQQPvb/UOuHXaF03kgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1, figsize=(12, 4))\n", "\n", "ax.plot(pl_spectrum[0] * 1e-3, pl_spectrum[1] / (np.sum(pl_spectrum[1]) * abs(pl_spectrum[0][1] - pl_spectrum[0][0])) * 1e3,\n", " color=red, linewidth=1, linestyle='-', label='PL')\n", "ax.plot(abs_spectrum[0] * 1e-3, abs_spectrum[1] / (np.sum(abs_spectrum[1]) * abs(abs_spectrum[0][1] - abs_spectrum[0][0])) * 1e3,\n", " color=blue, linewidth=1, linestyle='-', label='Abs')\n", "\n", "ax.set_xlim((1.5, 2.4))\n", "ax.set_ylim((0.0, 6))\n", "\n", "ax.legend(fontsize=12, loc='upper right', edgecolor='black')\n", "ax.grid(color='gray', linestyle='--', linewidth=0.5)\n", "\n", "ax.tick_params(direction='in')\n", "ax.xaxis.set_ticks_position('both')\n", "ax.yaxis.set_ticks_position('both')\n", "ax.set_xlabel('$\\hbar\\omega$ (eV)')\n", "ax.set_ylabel('PL (arb. unit.)')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These spectra can be further compared with the results obtained from the Huang–Rhys theory including all phonon modes, as demonstrated in Tutorial 001." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Computing Huang-Rhys factors using atomic displacements.\n", "Total \\Delta Q is 6.529832366847e-01 amu^{0.5} \\AA\n", "Total Huang-Rhys factor is 2.985289200067e+00\n", "time_axis range: -2.067833848461893e-12 to 2.067833848461893e-12\n", "d_t (s): 2.066800448237774e-15\n", "Energy range (meV): -1000.0000000000176 to 1000.0000000000176\n", "d_E (meV): 0.9999999999998863\n", "Integral check: 999.9999999998705\n", "Computing Huang-Rhys factors using atomic displacements.\n", "Total \\Delta Q is 6.529832366847e-01 amu^{0.5} \\AA\n", "Total Huang-Rhys factor is 3.102826963299e+00\n", "time_axis range: -2.067833848461893e-12 to 2.067833848461893e-12\n", "d_t (s): 2.066800448237774e-15\n", "Energy range (meV): -1000.0000000000176 to 1000.0000000000176\n", "d_E (meV): 0.9999999999998863\n", "Integral check: 999.9999999998684\n" ] } ], "source": [ "from pypl.hr_solver import hr_solver\n", "\n", "gs_phonon_file = '001_nv_diamond_abs_pl/phonon/gs_ph_mesh.hdf5'\n", "gs_file = '001_nv_diamond_abs_pl/gs_dft/pwscf.xml'\n", "es_file = '001_nv_diamond_abs_pl/es_cdft/pwscf.xml'\n", "\n", "# Unit of freqs is THz\n", "gs_phonon_freqs, gs_phonon_modes = parse_phonopy_h5(gs_phonon_file)\n", "# Unit of coordinates and cell_parameters is Angstrom\n", "atomic_symbols, gs_coord, cell_parameters = parse_atoms_qexml(gs_file)\n", "atomic_symbols_2, es_coord, cell_parameters_2 = parse_atoms_qexml(es_file)\n", "\n", "mass_list = {'C': 12.0107, 'N': 14.0067}\n", "\n", "pl_use_dis = hr_solver()\n", "hrf_dict_pl_dis = pl_use_dis.compute_hrf_dis(gs_phonon_freqs, gs_phonon_modes, atomic_symbols, gs_coord, es_coord, cell_parameters, mass_list=mass_list)\n", "linshape_fft_pl_dis = pl_use_dis.compute_lineshape_fft(hrf_dict_pl_dis, temp=4, sigma=[6, 2], zpl_broadening=0.3)\n", "spectrum_pl_dis = pl_use_dis.compute_spectrum(ezpl, spectrum_type='PL', lineshape=linshape_fft_pl_dis)\n", "\n", "\n", "es_phonon_fname = '001_nv_diamond_abs_pl/phonon/es_ph_mesh.hdf5'\n", "es_phonon_freqs, es_phonon_modes = parse_phonopy_h5(es_phonon_fname)\n", "\n", "abs_use_dis = hr_solver()\n", "hrf_dict_abs_dis = abs_use_dis.compute_hrf_dis(es_phonon_freqs, es_phonon_modes, atomic_symbols, gs_coord, es_coord, cell_parameters, mass_list=mass_list)\n", "lineshape_fft_abs_dis = abs_use_dis.compute_lineshape_fft(hrf_dict_abs_dis, temp=4, sigma=[6.0, 2.0], zpl_broadening=0.3)\n", "spectrum_abs_dis = abs_use_dis.compute_spectrum(ezpl, spectrum_type='Abs', lineshape=lineshape_fft_abs_dis)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAF5CAYAAAD9DVumAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8FNXex/HPbE+vJKEkdAgdqVINCii9C+pj79jQq2JFvfaCei2IKEUsiCCCVOlVpIiF3iG0ENL71nn+WLIQSM9udiZ73q9X7pXd2Zlf9ssse+acOUeSZVlGEARBEARBEARBEASv0Xi7AEEQBEEQBEEQBEHwdaJxLgiCIAiCIAiCIAheJhrngiAIgiAIgiAIguBlonEuCIIgCIIgCIIgCF4mGueCIAiCIAiCIAiC4GWicS4IgiAIgiAIgiAIXiYa54IgCIIgCIIgCILgZaJxLgiCIAiCIAiCIAheJhrngiAIgiAIgiAIguBlimmcb968mYEDBxIWFoafnx9Nmzbl9ddf93ZZgiAIgiAIgiAIguBxOm8XAPDDDz9w++23c/PNNzN79mwCAwM5evQoZ8+e9XZpgiAIgiAIgiAIguBxkizLsjcLOHPmDM2bN+eOO+5gypQp3ixFEARBEARBEARBELzC68Pav/76a3Jzc5k4caK3SxEEQRAEQRAEQRAEr/B643zjxo2Eh4dz4MAB2rdvj06nIyoqioceeoisrCxvlycIgiAIgiAIgiAIHuf1Ye3x8fGcPHkSvV7P888/T7du3dixYwevvPIKHTp0YNOmTUiSVOQ1DoeDEydOoNfrizxnNBoxGo3V/SsIgiAIgiAIgiAINYzZbMZsNrv+LMsyVquVBg0aoNG4v5/b6xPCORwOCgoKeOWVV3juuecASEhIwGAwMGHCBNasWUPfvn2LvObEiRM0btzYG+UKgiAIgiAIgiAIPuzo0aM0atTI7fv1euM8IiKCw4cPc+ONNxZ5fMCAAUyYMIFdu3Zd1TjX6/UAbN++ndq1a7seFz3n3peVlUVsbCynTp0iODjY2+UIVxD5KJfIRrnUmM3Bhat4+kh3AOrlHCE8P5kXxgQR0OlaL1fmfmrMx1eIbJRLZKNsIh/luLLn/Ny5c3Tp0sXVHnU3rzfO27Ztyx9//HHV44Wj7YsbLlA4lL127drUq1fPswUKlRIcHCw+TBRM5KNcIhvlUlM2MYNGoPsyHy127tkzjfrZhwn2/4AAldRfGWrKx9eIbJRLZKNsIh/luvK2a3fx+oRwo0aNAmD58uVFHl+2bBkA115b867yC4IgCIInRYdINDMfoal0DpmLXyC8O8WMIAiCIAhl8HrPef/+/RkyZAj//e9/cTgcXHvttezcuZPXXnuNwYMH07NnT2+XKAiCIAiqYtBJ+Mn5aCUN4Jmr+4IgCIIguJfXe84B5s6dy4QJE5g2bRoDBgzgiy++4Mknn2T+/PnFbl94X7m4v1x5jEYjI0eOFNkolMhHuUQ2yqXGbFJnTePuHS/S8PQWPm73Lq92mV5je87VmI+vENkol8hG2UQ+yuXpdqjXe84B/Pz8eOedd3jnnXfKtb1onCuX0WjkiSeeENkolMhHuUQ2yqXGbDJz7WysM5h9ge3I1wehd1iAVG+X5RFqzMdXiGyUS2SjbCIf5fKJxrlQs7Ru3drbJQilEPkol8hGudSWTZbDyILGdxR5rGb2mzupLR9fIrJRLqVk43A4SE9PJzU1FYfD4e1yFMNgMHDgwAFvl+ETNBoNERERhIWFeWTt8ooQjXPB7X777TduueUWb5chlEDko1wiG+VSXTZXtMTtWgP6mNrFb1sDqC4fHyKyUS5vZ+NwOFi0aBFTpkwhPT3da3UoVW5uLgEBAd4uw6eEhYXxyCOPMHToUK810kXjXBAEQRBqOLveiLFRjLfLEARBcHn77bf55ZdfGDBgAP369SMiIgKtVuvtshQjIyOD0NBQb5fhE+x2O6mpqaxatYo33niDvXv38uKLL3qlFtE4F9yua9eu3i5BKIXIR7lENsqlvmxq8iD2q6kvH98hslEub2aTlZXFkiVLeOSRR7j77ru9VoeSmc1mcc95NevduzeNGjVi2rRpPPbYY15ZY14Rs7ULNUtOTo63SxBKIfJRLpGNcqkumytmZpdkGYfF7KViPE91+fgQkY1yeTObpKQkrFaruHhTCrvd7u0SfFKXLl2wWq0kJSV55fiicS643d69e71dglAKkY9yiWyUS23ZaCNruf47JvckDVP/IW/bFi9W5Flqy8eXiGyUy5vZFE785u3Jt5QsPz/f2yX4pMJbK7w1OaE4IwRBEAShhgm+cQgAOuzcceADnvj3eV8b6S4IgiAIqiPuORfcbvTo0d4uQSiFyEe5RDbKpbZsooIlGpmPozcZLj0o19zWudry8SUiG+US2ShbWFiYt0sQvED0nAtut3LlSm+XIJRC5KNcIhvlUls2fgaJQDmXIE0BsiR5uxyPU1s+vkRko1wiG8+ZNWsWkiS5fnQ6HfXq1ePuu+/mzJkzru3Wr1+PJEnMnz//qn1kZWVV+LjZ2dk8++yz9O/fn1q1aiFJEq+++mqx2yYkJLjq02g0BAUF0aRJE8aMGcP8+fMrPKx78eLFDBkyhOjoaAwGA+Hh4dxwww18//33WK3Wq363N998k06dOhEcHIzRaKRBgwbcc8897Nq1y7Xdle+jyWQiJiaGPn368Pbbb5OcnFzh90jpRM+54HaV+TARqo/IR7lENu6Tu+MPrGdOEdC1B/radaq8P7VlkzpzKnf8uYgtTUbzZatXCLWk8gmp3i7LY9SWjy8R2SiXyMbzZs6cSXx8PPn5+WzcuJG3336bDRs2sHv37jLXMK/MhHCpqalMmzaNdu3aMXz4cL7++utSt2/UqBHff/894FxX/fjx4yxcuJAxY8bQq1cvFi9eTEhISKn7kGWZe+65h1mzZjFw4EA+/PBDYmNjyczMZN26dYwfP56UlBSeeOIJAI4ePUr//v1JTk7moYce4rXXXiMwMJATJ07w008/0bFjRzIyMooct/B9tFqtJCcns3nzZt59910++OAD5s6dS9++fSv8XimVaJwLbhcdHe3tEoRSiHyUS2TjPlnLFpK7eT2O3GzCb7unyvtTWzaZmQXsrNWbw37NyDJGIEsaqMGNc7Xl40tENsolsvG81q1b06lTJwD69OmD3W7n9ddfZ+HChdx2222lvlav11f4ePXr1yc9PR1JkkhJSSmzce7n58e1115b5LH77ruPmTNncs899/DAAw8wd+7cUvfx/vvvM2vWLF577TUmTZpU5LkhQ4bw7LPPcuTIEcB5wWHEiBGkpKSwdetWWrdu7dr2uuuu484772T58uVX/e6Xv48Ao0aN4sknn6Rnz56MHDmSw4cP15i/z2JYu+B2l588gvKIfJRLZOMest1G/l87ATA0bII9K7PK+1RbNulyAD82e5w9wR0uPViD7zlXWz6+RGSjXCKb6lfYED558mSZ25bVs16cwuHfVXX33XczcOBA5s2bV2qtVquVd999l/j4eF5++eVit4mJiaFnz54ALFy4kN27d/P8888XaZhfbsCAAfj7+5dZY1xcHJMnTyY7O5svv/yyHL+VOojGueB2S5cu9XYJQilEPsolsnEP86EDOHKd6/cmvfIs2WtWVHmfqsvmina4XatHH1P14f1Kpbp8fIjIRrlENtWvsAe5Vq1aZWwJGRkZHq6mdEOHDkWWZTZt2lTiNjt37iQtLY1hw4aV66JA4TwHw4cPd0uNAwcORKvVsnHjRrfsTwnEsHZBEAShRrGePV3kz5ZjR7xUiTcVbZ3btUZM8a28VIsgCEL5OQoKsJw64e0yADDENkBjMlX69Xa7HZvNRkFBARs2bOCNN94gKCiIoUOHurFKz6hfvz4AZ8+eLXGbxMREABo2bFiufVZ0+7IEBAQQGRlZao1qIxrngtt17NjR2yUIpRD5KJfIxj3sGenO/9DpwGbDfPxolfcpslE2kY9yiWyUS6nZWE6d4PT4u7xdBgD1pszC1DS+0q+/8n7uNm3a8MUXX5Tr/ujKDGt3J1klt0Kppc7yEo1zwe2uXC5BUBaRj3KJbNzDdrFxbopvRcGef7ClXqjyPlWXzVVfVmRkmw1JVzP/2VddPj5EZKNcSs3GENuAelNmebsMwFlLVcyePZsWLVqg0+mIjo6mdu3a5X6ttxudhfea16lT8i1RcXFxABw/frxc+7x8+/j4yl/0KJSbm0tqaipt2rSp8r6Uomb+Ky141b///kurVmL4pFKJfJRLZOMehT3nhtj6FOz5B0d21ZcLUls2mpAwuLj8a0R+EqHmC+RszCTo+hu9W5iHqC0fXyKyUS6lZqMxmarUW60kLVq0qPTEe3l5efj5+bm5ovL79ddfkSSJ3r17l7hNp06dCA8PZ9GiRbz99ttl3nd+4403Mm3aNBYuXMhzzz1X5RqXLl2K3W4nISGhyvtSCjEhnCAIglCjRNzzMPU+n0XIiLEAyGYzDovZy1VVr9ChowHQYefOA+/x7F8TavRs7YIgCIL7zJw5k+XLl3PLLbe4eruLo9frmThxIgcOHOD1118vdpvk5GS2bNkCwLBhw2jTpg1vv/02e/bsKXb73377jby8vDJrTExM5OmnnyYkJIQHH3ywHL+VOoiec8Ht3DUDo+AZIh/lEtm4hy4sHF1YuHNIoEYLDjuO7Gw0EcZK71Nt2USHSNS3nMRk0gMXezJqcONcbfn4EpGNcolslOOPP/646jGHw0GfPn2oVasWd911F9988w3Hjx+nQYMGpe5r+fLl5Obmkp2dDcC+ffuYP38+4Jzd/PJlyvLz813Hzs/P59ixYyxcuJAlS5Zw3XXXMXXq1DJrf+aZZ9i/fz+vvPIK27dv59ZbbyU2NpbMzEw2btzItGnTeO211+jRowdarZZffvmF/v37061bNx5++GH69OlDQEAAJ0+eZP78+SxevJj09PQix9izZw82mw2bzUZycjKbNm1i5syZrv2VZ/Z7tRCNc8HtNm7cyI031syhkzWByEe5RDbuJUkSwQOGIun1SFptlfaltmz8jRLBjhz8pEuzDNfgtrnq8vElIhvlEtkox+TJk4t9fN26dSQkJJCTk4Ofnx+hoaFl7uvhhx8usjb5vHnzmDdvHsBVjftjx47RrVs3wDkBXXR0NB06dGDevHmMHDkSjabsQdaSJDFz5kxGjBjBtGnTmDBhAunp6QQFBdG+fXveffdd7r77btf2jRs3ZteuXXz66af88ssvfPHFF5jNZmrXrk3v3r3ZvHkzISEhRY5R+HqDwUBoaCgtWrRg4sSJ3HfffTWqYQ6icS54QFpamrdLEEoh8lEukU3VybJM6owv0AaHEDJ4BFETJrplv2rLJnXmVG79eznbGo9iVotnCDWnMplUb5flMWrLx5eIbJRLZOM5d911F3fddVeZ2yUkJJQ48VtqaioREREAbN68mUceeaRcjfMTJ06Uq8b169eXa7vyGjp0aLmXiAsJCeGll17ipZdeKnW78r6PNYlonAtuV/hBIiiTyEe5RDZVJ+fnkfHjbABCBo9w237Vlk3GhWz2h7TnpCGWNFMMZo0fkOLtsjxGbfn4EpGNcolslE13cXWNvXv3kpeXx8SJ7rnYLCibaJwLbtezZ09vlyCUQuSjXCKbqiucqV0ymdD4+SNbrdizs5CMRrQBgZXer9qySSOQ2S3GF32wBo9rV1s+vkRko1wiG2ULDHT+m9WqVSuysqq+6oigDmK2dsHtFi1a5O0ShFKIfJRLZFN1hWuca0PDADj/weucGDuIrOW/Vmm/qsvmioa4rNGijy7/+rpqo7p8fIjIRrlENsqWkZHh7RIELxCNc0EQBKHGsF/RONcGBQO4Za1zNbPpTPi16+DtMgRBEARBKIVonAtu1759e2+XIJRC5KNcIpuqK2yEFzbKNUHOGV/tVWyci2yUTeSjXCIb5RLZKNvlS54JvkM0zgW3K8+yC4L3iHyUS2RTdY7cXAA0F+8vd1fPueqyuer+chnZ4fBKKdVBdfn4EJGNcolslE2SJG+XIHiBOCsFt9u1a5e3SxBKIfJRLpFN1TnyLjbO/QOc/3+xcW6v4mQ6astGCgxy/XeQJY2o7JNkr1zqxYo8S235+BKRjXKJbJQt9+LFZsG3iNnaBUEQhBojZPAI/Lt2d83Mrg32zXvOw27+P/g6Hz027t7/Lq3SdkLvF7xdliAIgiAIpRCNc8HtBg8e7O0ShFKIfJRLZFN12tAw12RwAJqLPchVvedcbdlEB0vEWk7hZ9ICNX9opNry8SUiG+US2ShbaGiot0sQvEAMaxfcbvv27d4uQSiFyEe5RDbup6sVRVC/gQRed0OV9qO2bAJNEiH2bMKkPNdjcg1e51xt+fgSkY1yiWyUTQxr902icS64XXJysrdLEEoh8lEukU3VZf22hPQfZ2M5dRIAfVQM0c9OIvK+R6q0X7VlkzrrS27e/T7RyXv4semjfNj+A6DmNs7Vlo8vEdkol8imenzyySdIkkTr1q2Lff7EiRNIksQHH3xQ5HGr1erx2mbPns24ceNo3rw5Go2GBg0aFLvdrFmzkCTJ9WMymYiJiaFPnz68/fbbFf67dOzYMR599FGaNWuGn58f/v7+tGrVipdeeokzZ85ctf3ixYsZMmQI0dHRGAwGwsPDueGGG/j++++LvE+X16jVagkLC6Ndu3Y8+OCD/PHHHxWq0VvEsHbB7UJCQrxdglAKkY9yiWyqLmvZIgr27UYfWx9DbH237Vdt2WScTeGUf0PO6qJJ9q9Hjj4ESPF2WR6jtnx8ichGuUQ21WPGjBkA7N27l23bttG1a9dyvU6n83wz7dtvvyUpKYkuXbrgcDjKvCAwc+ZM4uPjsVqtJCcns3nzZt59910++OAD5s6dS9++fcs85pIlSxg3bhyRkZE8+uijXHPNNUiSxO7du5kxYwZLly7lr7/+Apwjvu655x5mzZrFwIED+fDDD4mNjSUzM5N169Yxfvx4UlJSeOKJJ1z7Hz16NP/5z3+QZZmsrCz27NnD7NmzmTZtGo8//jj/+9//qvameZhonAtud8MNVRs+KniWyEe5RDZV58jNAS7N1i7LMrLZjCM/D21wCJJWW6n9qi2bC3IwX7WeUPTBmttxrrp8fInIRrlENp63c+dO/vnnHwYNGsTSpUuZPn16uRvnQUFBZW9URb/99ptrSb3BgwezZ8+eUrdv3bo1nTp1cv151KhRPPnkk/Ts2ZORI0dy+PBhoqOjS3z98ePHGTduHM2aNWPdunVFLhBdf/31PP744/zyyy+ux95//31mzZrFa6+9xqRJk4rsa8iQITz77LMcOXKkyOPR0dFce+21rj/feOONTJgwgQceeIBPPvmE+Ph4Hn744VJ/T28Sw9oFt1uwYIG3SxBKIfJRLpFN1bmWUrs4WzvAsWHXc+LmgdjT0yq9X7Vn49Bo0UWV/IVJ7dSeT00mslEukY3nTZ8+HYB33nmH7t278+OPP5KXl1fstg6HgzfffJO4uDhMJhMdOnRgzZo1Rba5cOECDzzwALGxsRiNRmrVqkWPHj1YvXp1pepzx1r3cXFxTJ48mezsbL788stSt/3www/Jzc1lypQpxY7ckCSJkSNHAs5h/e+++y7x8fG8/PLLxe4vJiaGnj17llmjVqvls88+IzIykvfff78cv5X3iMa5IAiCUGPYC3vOA5w955IkoTH5AeAoyPdaXdWvaDe5XWsgoHM3L9UiCILge/Lz85kzZw6dO3emdevW3HPPPWRnZzNv3rxit//ss89YsWIFH3/8Md999x0ajYYBAwawdetW1za33347CxcuZNKkSaxcuZKvv/6avn37kpqaWl2/VrEGDhyIVqtl48aNpW63cuXKq3q2S7Jz507S0tIYNmwYklT1VUf8/Pzo27cvx48f5/Tp01Xen6eIYe2C25U04YWgDCIf5RLZVI1styNf7JEoHNYOIPn5Q14uchUa56rLRsYXVlBzUV0+PkRko1xKzabAKpOY6vB2GQDERWgw6Sv3YTp//nwyMzO59957ARg7diwTJkxg+vTp3HnnnVdtb7fbWbVqFSaTCYBevXrRsmVLJk2axKpVqwDYsmUL9913H/fff7/rdcOGDatUfe4UEBBAZGQkZ8+eLXW7xMRE2rdvX659JiYmAtCwYcOqludSv75zLpqzZ89Sr149t+3XnUTjXHA7f39/b5cglELko1wim6q5vGdce9mwdo2fH3bAkV/5xrnqsqnB95cXR3X5+BCRjXIpNZvEVAcPzyjwdhkAfHGPiWYxlZurZPr06fj5+TFu3DgAAgMDGTNmDDNnzuTw4cM0bdq0yPYjR450NczBOWHfkCFDmDNnDna7Ha1WS5cuXZg1axYRERH07duXjh07otfrK/8LupEalutUQ41eb5yvX7+ePn36FPvc1q1byzXsQVCW7du307hxY2+XIZRA5KNcIpuqKZwMTtIbkAwG1+Mav4vD2vOLv8+vPNSWjWQywcVJd022HIKsWWQuWUvI4BHeLcxD1JaPLxHZKJdSs4mL0PDFPaayN6wGcRGVuwP4yJEjbNy4kVGjRiHLMhkZGYBzJvGZM2cyY8YM3n777SKviYmJKfLn3NxcYmJisFgs5OTkEBISwty5c3njjTf4+uuvefnllwkMDGTEiBG89957V72+OuXm5pKamkqbNm1K3S4uLo7jx4+Xa59xcXEA5d6+PE6edC6zWqdOHbft09283jgv9NZbb13VSFfqcBtBEARBeXSh4dT7fBayuWiPi2Ry9g7JVeg5V5vw2++FGQUYsHHv/ndom7IVudPT3i5LEAShTCa9VOneaqWYMWMGsiwzf/585s+ff9Xz33zzDW+88Qbay1YQSUpKumq7pKQkDAYDgYHO0WCRkZF8/PHHfPzxxyQmJvLrr7/y3HPPkZyczIoVKzz3C5Vh6dKl2O12EhISSt3uxhtv5NNPP+WPP/4oswO2U6dOhIeHs2jRIt5+++0q33een5/P6tWrady4sWKHtIOCJoRr2rQp1157bZGfwr+IgroMGDDA2yUIpRD5KJfIpmokgwFTs3j82rQv8rjm4jDBqgxrV1s2UcEa6ljOUl9zwSdGuKstH18islEukY1n2O12vvnmGxo3bsy6deuu+vnPf/7DuXPnWL58eZHXLViwgIKCSxeXNRoNixcvplevXkUa8YXi4uJ49NFH6devH7t27fL471WSxMREnn76aUJCQnjwwQdL3fbJJ58kICCA8ePHk5mZedXzsiy7llLT6/VMnDiRAwcO8Prrrxe7v+TkZLZs2VJmjXa7nUcffZTU1FQmTpxYjt/KexTTcy7UHP/88w/XXXedt8sQSiDyUS6RjWf4XdMJbUgoutq1K70PtWUT4i8R6sgiRKPFNTOcCu61qyy15eNLRDbKJbLxjOXLl3P27FnefffdYnuSW7duzWeffcb06dMZPHiw63GtVku/fv146qmncDgcvPXWW2RlZfHaa68BkJmZSZ8+fbj11luJj48nKCiIHTt2sGLFCtfyY3DpluFXXnmFV199tdRa9+3bx759+wBnL31eXp6rp79ly5a0bNmyyPZ79uzBZrNhs9lITk5m06ZNzJw5E61Wyy+//EKtWrVKPV7Dhg358ccfGTt2LO3bt+fRRx/lmmuucdVSOOJgxAjnLVjPPPMM+/fv55VXXmH79u3ceuutxMbGkpmZycaNG5k2bRqvvfYaPXr0cB3j/Pnz/PHHH8iyTHZ2Nnv27GH27Nn8888/PPnkk0Um01MixTTOH3nkEcaNG4e/vz/dunXj5ZdfLte6dYLylDVTo+BdIh/lEtlUjfnYYfK2b8VQvyEB3Xq5Hg8bc1uV9622bFJnfcmoPZv4q/FgFja8h411BvMaKd4uy2PUlo8vEdkol8jGM6ZPn47BYODuu+8u9vnIyEhGjBjB/PnzOX/+vOvxRx99lIKCAh5//HGSk5Np3rw5S5cudTU8TSYTXbt25dtvv+XEiRNYrVbi4uKYOHEizz77rGs/OTnO+Vdql+OC9E8//eRq/BcaM2YMQLGN+8LfyWAwEBoaSosWLZg4cSL33XdfmQ3zQoMHD2b37t1MnjyZqVOncurUKTQaDQ0bNuSmm27isccec20rSRIzZ85kxIgRTJs2jQkTJpCenk5QUBDt27fn3Xffvep9LryVQKPREBgYSP369enWrRtTp05VxVxmXm+ch4SE8MQTT5CQkEBERARHjhzh/fffJyEhgaVLl3LjjTeW+NqsrKwifzYajRiNRk+XLJRB3I6gbCIf5RLZVE3B/r2kTp9CQPfeRRrn7qC2bDJOnCHdEEGqJoyzgQ1JM0UB671dlseoLR9fIrJRLpGNZxQOyy7NnDlzmDNnjuvPl88iPmnSJAAyMjIIDQ11PW40Gvniiy/K3PfGjRupV69escu1XenVV18ts3cd4K677uKuu+4qc7vyatSoEZ9//nm5tx86dChDhw4tcztPzMZuNpsxm82uP1/Z/nQ3rzfOr7nmGtdwBnCu6TdixAjatGnDs88+W2rjPDY2tsifR44cyfjx4+nSpQtLliwBoEOHDjgcDv7++2/AuRbg5s2bSU1NJTw8nN69e7Nw4UIA2rZti16v588//wRg0KBB7Ny5k/PnzxMcHEz//v1dQz1atWpFYGAg27ZtA5wTHOzZs4czZ84QEBDA4MGDmTt3LgDNmzcnMjLSdU9E3759OXToEImJiRiNRkaOHMncuXNxOBw0btyYunXrsnHjRgASEhJITEzk2LFj6HQ6xowZw88//4zFYqF+/fo0btyYtWvXAtCzZ0+Sk5M5dOgQALfccguLFi0iLy+PevXq0bJlS1auXAlAt27dyMzMdA1lGTNmDCtWrCA7O5uYmBg6dOjAsmXLAOjcuTMFBQXs3r0bgBEjRrB+/XrS09OJjIykW7duLF682JVn48aNXR84Q4YMYevWraSkpBAWFkZCQoLrQ6tNmzaYTCZ27NgBwMCBA9m1axdJSUkEBQVx0003MW/ePMA5tCYkJIStW7cC0L9/f/bt28fp06fx9/dn2LBhrmM2a9aMqKgoNm/eDMD111/P0aNHOXnyJAaDgVGjRjFv3jxsNhuNGjUiLi6O9evXA9C7d2/OnDnD0aNH0Wg0jB07lgULFmA2m4mLi6NZs2asXr0agB49epCSksLBgwcB5/qVS5YsITc3l7p169K6dWt+++03ALp27UpOTg579+4FnLN1rly5kqysLKKjo+nUqRNLly4FoGPHjlitVv79918Ahg8fzsaNG0lLSyMiIoKePXuyaNEiANq3b49Go3HdazR48GC2b99OcnIyISEh3HDDDSxYsABwDqPy9/cnOzubOXPmMGDAAP755x/Onj1LYGAgAwcO5KeffgIgPj6e8PBwfv/9dwD69evHgQMHOHXqFH5+fgwfPpwff/wRWZZp2rQpMTExbNq0CYA+ffpw4sQJjh8/jl6vZ/To0cyfPx+r1UrDhg1p0KAB69atA5zne1JSEocPH0aSJMaNG8fChQvJz88nNjaW+Ph419qe3bt3Jy0tjQMHDgBw8803s2zZMnJycqhTpw7t2rVz3b/VpUsX8vLy2LNnj+uzYc2aNWRmZhIVFaXYz4jCbGr6ZwTAX3/95fbPiKAzZwBIPH8eQ2rqpc8IPz+GDBzAvLlzcej0lfqMKMxGLZ8R/yZb+aztW1zuz51/0uWGAWV+Rmzfvh1AVZ8Rsixz8uTJGv8ZocbvEbIsc+TIEUV8RojvEUW/R8iyzP79+yv8PcIdnxHx8fHk5uaSkZFBbm4uer2e7OxsAIKDg10NIkmSCA8PJy0tDVmWXR1xhQ2koKAgrFYrBQUFrm3T09NxOBwYDAZMJpNr28DAQOx2O/kX5x8JDw8nMzMTu92OwWDAz8/PdR90QEAADofDtW1YWBjZ2dnYbDb0ej0BAQGuGdgDAgKQZZm8POeKIKGhoeTk5GCz2dDpdAQFBZGeng44l6+TJInc3FzXtrm5uVitVrRaLcHBwa5t/fz8MJvNrp7wkJAQ8vPzsVgsaLVaQkJCSEtLA5y96jqdjpycHFatWsULL7yAzWYjNTUVjUZDWFiY6z00mUxF3u+goCAsFkuR97vwPSzt/QaIiIggIyOj2PewtPdbr9fj7+9f5P2+/D0s7f0uXALw8ve78D0s6/0OCQkhLy/P9X5f/h76+fmh1WpdfyczMjLYtGkTH3/8sescqA6SrNAF3x5++GGmTp1KXl4efheXwSmUlZVFSEgIp06dIjg42PW46DlXhjlz5nDLLbd4uwyhBCIf5RLZVE3at9NJm/0VwYNHEPXEpQlf0uZ8Q9qMLwgeMJSop16o1L7Vls3vr33My/pL99UZ7fn8lLCbwF7FL12qdmrLx5eIbJTLm9kcOHCA//u//+O7774jPj7eKzUoXWpqKhEREd4uw+dc+XezuJ7zwvveL2+HuovXe85LUnjNoLRp84ODgz3ypgiCIAjqU7iOucbPv8jj7pitXXWuuO5u1xpqbMNcEARBEDylujt/FbOU2uXS09NZsmQJ7du3x3TxS5WgHuIKqLKJfJRLZFM1lxrnRUdbFTbWHQV5ld63yEbZRD7KJbJRLpGNsl05cljwDV7vOb/11luJi4ujU6dOREZGcvjwYSZPnsz58+eZNWuWt8sTKiE8PNzbJQilEPkol8imagob59IVPefSxS84chV6ztWWjTJvWPMcteXjS0Q2yiWyUbbi1jYXaj6v95y3bduW3377jfvuu4++ffvy4osv0rJlS37//Xf69u3r7fKESiic/ENQJpGPcolsqqaw8X31sHZn47wqw9pVl41O7/pPrcOKyZJN5q/zvViQZ6kuHx8islEukY2yFU4EJ/gWr/ecP/fcczz33HPeLkMQBEFQuYh7xxMy/GYM9eKKPO5qnBf4zj3nEfc+DLMKMGLlrn1v0eHCRhytH/d2WYIgCIIglMLrjXOh5unXr5+3SxBKIfJRLpFN1RjiGmCIa3DV44XD3KsyrF1t2UQFa4i2JhFkBLlwXtUaPNZdbfn4EpGNcolslE1Meu2bvD6sXah5CteYFZRJ5KNcIhvP0IaGEdDjOvy7dKv0PtSWTXigRJg9gyhNtrdLqRZqy8eXiGyUS2SjbIVriQu+RfScC2536tQpb5cglELko1wim6rJXLwAgMDrbkAbHOJ6XB8VTe1X363SvtWWTeo3XzF8/1b2Nh7I8rhb+SO6H5NI9nZZHqO2fHyJyEa5RDbKZrFYvF2C4AWicS64nVj6QdlEPsolsqma1Blf4MjJxq9dhyKNc3dQWzZpB49hxkCWw8Sp0KacDWgA8hJvl+UxasvHl4hslEtko2wajRjg7ItE6oLbDR8+3NslCKUQ+SiXyKbyZFm+tM65v3/x29hsyJW871pt2ZzWRPPRNZPZEtwTABlNjb7nXG35+BKRjXKJbDxn1qxZSJLk+tHpdNSrV4+7776bM2fOuLZbv349kiQxf/7Vq2mEhYVV+rg7d+4s9vnBgwfToEGDIo81aNCgSK0BAQF06NCBzz77rNL/ZgqVJxrngtv9+OOP3i5BKIXIR7lENlVgtYLdDly9zrnscHDkph4cHdATR2ZGpXavvmycX6iki/8vSxLa8EhvFuRR6svHd4hslEtk43kzZ85k69atrFq1ivvvv585c+bQq1cvcnNzy3xtWlpaNVTo1KNHD7Zu3crWrVv59ttv8ff357HHHuPtt9+uthoEJzGsXXA7cZVN2UQ+yiWyqbzCXnO4tHRaIUmjQdLqkO12HOYCtJXYv9qykXFO0X554zy43wBvluRRasvHl4hslEtk43mtW7emU6dOAPTp0we73c7rr7/OwoULue2220p9bXXmExoayrXXXuv6c9++fYmLi+PLL7/khRdeqLY6BNE4FzygadOm3i5BKIXIR7lENpVX2DiXjEYk7dXNb8loRLaYkc3mSu1fbdkUNs4vufLPNYva8vElIhvlUnI2jtKWvtRq0BiM5dtWI6Exmiq1rScUNoBPnjxZ5rYmk2drKU1wcDDNmjXj33//9VoNvko0zgW3i4mJ8XYJQilEPsolsqm8wi9cGr/i7zeXjEbIBoe5ckvTqC0bx8UOl8Ke85pObfn4EpGNcik5m2ND+5T4nH+X7tR580PXn4/fPAC5hGXHTG2vod7kL1x/PnH7iBJvbzI2a0Hs5zMrV3A5HTlyBIBatWqVua1er6/0cex2Ozab7arHy9sbb7PZOHXqFM2aNat0DULliHvOBbfbtGmTt0sQSiHyUS6RTeW5es5LaJwX9obIlWycqzWbyxvn6b/M82IlnqXWfHyByEa5RDaeV9hIzsnJYenSpbzxxhsEBQUxdOjQMl+bnZ1d6eNee+216PX6q36WLVtW7PayLGOz2bDZbCQmJjJ+/HhSU1PFPedeIHrOBUEQBNUz1G9InXc/Ban44dtSYeO8oHLD2tUm/L5HYU4BGo2Ge/e9RZfza5AbPOTtsgRBEMql0a/rSn5SW7RvseFPy0veVlP034QG3/5S7m3d4fL7uAHatGnDF198QXR0tNuPdbnZs2fTokWLqx5/8skni13fftmyZVf11E+dOpVBgwZ5rEaheKJxLrhdnz4lD0USvE/ko1wim8rTBgTi36Fzic9LRuf9iQ5L5RrnasumXrhELWsyoSZHTb/dHFBfPr5EZKNcSs5GU4E12D21rTsUNpJ1Oh3R0dHUrl273K8NDg6u9HFbtGjhmojuciEhIcU2znv27MlHH32E3W7n8OHDvPzyyzz66KO0atWKnj17VroOoeLEsHbB7U6cOOHtEoRSiHyUS2TjOX6t2+F/bU+0wSGVer3asokO0RBuTydak3XpwRo8M7Pa8vElIhvlEtl4XmEjuX379hVqmAOYKzmBaWWEhITQqVMnunbtyv/93/+xcuVK9Ho948ePx+FwVFsdgmicCx5w/Phxb5cglELko1wim8ozHzlE5tKF5O/5u9jnIx94jDqvf4Bf63aV2r/askn7djqDD35NWPox1tQdwZetXsFWc9vmqsvHl4hslEtko2zV2Ti/UtOmTXn22WfZvXs3c+fO9Vodvkg0zgW3q8rskoLniXyUS2RTeXk7/+DCx++QtXyxR/avtmxSdu9Hb8vDYpM4EdyCXVG9i1lereZQWz6+RGSjXCIb5fjjjz+YP39+kZ/Fixdz4cIFAO666y4kSarW0Q5PP/000dHRvPbaa9jt9mo7rq8T95wLbjd69GhvlyCUQuSjXCKbyiucrb2s+wllWUYqYdK40qgtmyPa+kzu+BpB9kvD2mvwqHbV5eNLRDbKJbJRjsmTJxf7+Lp160hISCAnJwc/Pz9CQ0OrrabAwEAmTZrEI488wvfff88dd9xRbcf2ZaLnXHC7+fPne7sEoRQiH+XydDb2zAxs6anlXudUTS6tcx5Q7PMpU//H0YG9Sf9ueqX2r7bzpjBh6bKsNSFh3immGqgtH18islEukY3n3HXXXciyXOykbJdLSEhAluVif1JTU0lISABg8+bNPPLII2U2zss67pIlS67qfT9x4gRLliwpdvvx48cjy7JomFcj0XMuuJ3VavV2CUIpRD7K5alsCg4fIOXzDynY+y8AhoaNiXz4SfyvKf1Lg5rIrnXOS+45l60WHAWVW+dcbeeNq3F+2TrnQTeVva6uWqktH18islEukY2yFV5I37t3L3l5eUycONHLFQnVQfScC27XsGFDb5cglELko1yeyCb3j82cfuJ+HPl5RE98hZiX30ITGMTZ554ge+1Ktx/PW1zD2v39i31eMl1c59xcuca52s6bGjg4olRqy8eXiGyUS2SjbMaLS4C2atWKrKwsIiMjvVyRUB1Ez7ngdg0aNPB2CUIpRD7K5e5sCg7u49x/nyegS3diXngdyWAAIKBHb5Lff4PkD95AXzcWU/MWbj2uN7iGtZtKaJwbnY1zRyVnv1XbeVNcz3lNbrCrLR9fIrJRLpGNshU2zgXfInrOBbdbt26dt0sQSiHyUS53ZuPIzSXpvy9gbNysSMMcQNLqiHrqBQwNG3P+vdeQbTa3HddbXI3zEnrONRe/5MiVbJyr7bwpnJn98sZ5xpKFXqrG89SWjy8R2SiXyEbZsrKyyt5IqHFE41wQBKEGSp3xBfasTGJeLNowLyQZDEQ99QLW04lkLPzJCxW6V+R9jxAz6W1MLVsX+3xhz3llh7WrTdjt9wJg15m47eBHfLphIIbsFC9XJQiCIAhCaUTjXHC7Xr16ebsEoRQiH+VyVzbmo4fJXPwzEXc/iD6mTonbGRs3JXjAMNLnfOPqeVYrU8vWBPbqgy4yqtjnC3vOKzshnNrOmwbRRiKsKURrs9DLVgwOc5Fe9JpGbfn4EpGNcolslC0oKMjbJQheIBrngtslJSV5uwShFCIf5XJXNilffYa+biwhQ8tewzbsljtw5OaQtWyhW46tVNrIKPzadcDYuGmlXq+28yYuUkO4PZ3aGt8YFqm2fHyJyEa5RDbKJmbT902icS643eHDh71dglAKkY9yuSOb/L3/kv/nNiLueQhJV/acn/ro2gRdfyMZv8xFtturfHxvyVqxmOy1K0vsGfdv35G6H0wh8oHHKrV/tZ03ad/PZMCRWYRlnWRT7YHMjJ9IgUPr7bI8Rm35+BKRjXKJbJStoJIjvQR1E41zwe0kSfJ2CUIpRD7K5Y5sMuZ9jz62PgE9Esr9mpAhI7GdTyLvz21VPr43yA4HyZPf5Pzbk3Dk53rkGGo7by7s+IvQvPPIZgtHQ1rzR+3+WOSa+0++2vLxJSIb5RLZKJvIxzfV3H+pBa8ZN26ct0sQSiHyUa6qZmNJPEHu7xsJG3Mbkqb8H+/G+FYYGjUla+nCKh3fWy6f5E3jF+CRY6jtvNljiOe/Xb7mj4DOlx6swWupqS0fXyKyUS6RjbKFh4d7uwTBC0TjXHC7hQsXersEoRQiH+WqajYZ839AGxZO0A03Veh1kiQRfNNgcrf/jj0rs0o1eIMjL8/5HxoNUgnrwlpOneTY6Js4cdvwSh1DbeeNXMx/ERDshUqqh9ry8SUiG+US2VSPTz75BEmSaN26+NVETpw4gSRJfPDBB0UeT09P93htkiTx6KOPFvvc/PnzkSSJ9evXux579dVXkSTJ9aPX64mLi+P+++8Xcxi4iWicC26Xr/JZn2s6kY9yVSUbW3oqWauXEzpibLFLp5Ul8Lq+4HCQs3l9pWvwFke+s3GuMfmVOAxQ0ulwZGZU+uKD2s6bwia5BK4e85AhI71VjsepLR9fIrJRLpFN9ZgxYwYAe/fuZdu28t8+5nA4PFVSla1YsYKtW7eyfPlyxo0bx4wZM7jhhhvEJHZuIBrngtvFxsZ6uwShFCIf5apKNtm/LUWSNAQPHFap1+vCI/Br14Gc9asqXYO3yAXOL5iSn3+J21y+zrlcieHdajtvZK6+SFFzB7WrLx9fIrJRLpGN5+3cuZN//vmHQYMGATB9+vRyv9ZQiQvt1aVjx45ce+219O3bl/fee48777yTffv2sXnzZm+XpnqicS64XXx8vLdLEEoh8lGuymYjOxxkLf+VwF590AaHVPr4gT0TyP/3L+y5OZXehzcUDmvX+JfWOL843F2WoRJX9tV23hR3/aEG33Kuunx8ichGuUQ2nlfYGH/nnXfo3r07P/74I3mFt2JdweFw8OabbxIXF4fJZCIhIYE1a9YU2ebChQs88MADxMbGYjQaqVWrFj169GD16tUe/11K06lTJwDOnz/v1TpqAtE4F9xu1Sr19bz5EpGPclU2m/x/dmE9e5rgQcOrdHz/Lt3Bbif/z+1V2k91c1wcmqkx+ZW4jeZizzmAw1zx5WnUdt7IF4f3S8hIF/vMM5cv9mZJHqW2fHyJyEa5lJxNvkUu8cdik8u9rdla+W2r/Dvk5zNnzhw6d+5M69atueeee8jOzmbevHnFbv/ZZ5+xYsUKPv74Y7777jtkWWbAgAFs3brVtc3tt9/OwoULmTRpEitXruTrr7+mb9++pKamVrpOWZax2WxX/VRkWP3x48cBaNasWaXrEJzKXgRXEARBULSsZYvQx9bH1Lpdlfajj6mDoX5DcrdtIbD39W6qzvOMTZsTM+ktpFIa55JOB1ot2O3O2d2Dau7kaACho2+D1WAxBDDqyDSuPbeSoMih3i5LEAShXAZ/UHzvMkDXxlreGnvpguvo/+VRUMKAqHZxGj78v0v/Ntz2eR6ZJdxq37y2hil3l/zvSEXNnz+fzMxM7r33XgDGjh3LhAkTmD59OnfeeedV29vtdlatWoXJ5PzdOnXqRMeOHZk0aZLrQsqWLVu47777uP/++12vGzascrezFZoyZQpTpkyp0Gvsdjs2m42cnBxWrVrFF198wS233EKHDh2qVIsgGueCB3Tv3t3bJQilEPkoV2WysWdmkLNlPRH3POyWNVH9u3Yne+UyZIejQsuxeZMuPILAXmVfTNAYTTjycnEUVLznXG3nTaNYf0Jt54g0mjHZ8wmyZqKRau64drXl40tENsolsvGs6dOn4+fn51qyLjAwkDFjxjBz5kwOHz5M06ZNi2w/cuRIV8McoHbt2gwZMoQ5c+Zgt9vRarV06dKFWbNmERERQd++fenYsSN6vb5Kdd58880888wzVz2+du1aJk6cWOxrYmJiivy5d+/efPPNN1WqQ3ASjXPB7dLS0qhfv763yxBKIPJRrspkk71+NTgcBPcd4JYaArr0IOOn7zEfPoipeQu37FMpjC1aI1vMSNqK/9OntvOmWW0tkbZUavvbL3u05jbO1ZaPLxHZKJeSs1nydMlziGivuG48/4mSt9Vccc36+0fKv21VHDlyhI0bNzJq1ChkWSYjIwOA0aNHM3PmTGbMmMHbb79d5DVXNnjtdjsxMTFYLBZycnIICQlh7ty5vPHGG3z99de8/PLLBAYGMmLECN57772rXl9etWrVct0zfrkTJ06U+JrVq1cTEhJCWloa06ZN4+eff+axxx5j6tSplapBuEQd3SKCqhw4cMDbJQilEPkoV2WyyV69HP/O3dCGhrmlBlOrtmgCAsnbvsUt+6sO5iOHyF6/CvOxw6VuV/ed/1Hvw6noa9ep8DHUdt6k/zibvsd+ICT7LDtrXcf3zZ4g2178GvA1gdry8SUiG+VScjZ+BqnEH4NOKve2Rn3lt62KGTNmIMsy8+fPJywszPVTOGv7N998g91uL/KaK9cJz8/PJykpCYPBQGBgIACRkZF8/PHHnDhxgpMnT/L222+zYMEC7rrrLrfVXh7t2rWjU6dO9O/fn3nz5tGvXz+mTZvGjh07qrWOmkg0zgVBEFTKcjoR84G9BPW9yW37lHQ6/Dt1JXfb727bp6dlr1vJ+TdfJmvlUm+XohgXNm2hXuYhNOZcDoe0YWPdoeTLVRv6KAiCIJTNbrfzzTff0LhxY9atW3fVz3/+8x/OnTvH8uXLi7xuwYIFFFx221V2djaLFy+mV69eaLXaq44TFxfHo48+Sr9+/di1a5fHf6+SSJLE559/jlar5aWXXvJaHTWFaJwLbnfzzTd7uwShFCIf5apoNtlrf0PjH0DAtT3dWodfhy6YDx/AkZvr1v16iuyarb3k4YpVpbbzZrtfB17q9h07/Dq6Zmt31NxR7arLx5eIbJRLZOMZy5cv5+zZszzwwAMkJCRc9fPcc89hNBqvWvNcq9XSr18/fvnlF37++WduvvlmsrKyeO211wDIzMykQ4cOfPDBByxZsoQNGzbwwQcfsGLFCvr16+faz/r165EkiVdffbXafuemTZvywAMPsHLlSrHWeRWJxrngdsuWLfN2CUIpRD7KVZFsZFkmZ81vBPS+vsgyYe7g1/YacDjI3/uPW/frKY6Ci43zUtY5B0h68yWOjxlAzub1FT6G2s4buZj/kkzu/XuiJGrLx5eIbJRLZOMZ06dPx2AwcPfddxf7fGRkJCNGjGDJkiVF1gUv7AV//PHHufXWWzGbzSxdupQePXoAYDKZ6Nq1K99++y233XYbAwYM4Ouvv2bixIl89dVXrv3k5OQAzgnlqtMrr7xCYGAgkyZNqtbj1jSKmxDu66+/5v777ycgIMD1l0tQF5Gbsol8lKsi2RTs34P17GlqPfm82+vQ141FGx5B/u6/Ceii/Nl8HXnOHn6NX+lL4Dhyc7BnpOPIrfg5oL7z5tK9k3bJ+U99yPCx3irG49SXj+8Q2SiXyMYzfvnllzK3mTNnDnPmzHH9WZYvXUgtbNympqYSERHhetxoNPLFF1+Uue+NGzdSr169Ypdru9Llx73S6NGjr3r+1VdfLbFHPioqiuzs7DKPKZROUT3nZ86c4emnn6ZOnYpP1iMoh8hP2UQ+ylWRbHJWr0BXK8rZy30ZR34eJ+8Zy9HB13FhykfIdluF65AkCb827Sn4968Kv9YbHBeHtUtlDGuXLo4wkC3mCh9DbeeNo5jHSvkOpnpqy8eXiGyUS2SjbAaDoVKvW7duHS+//HKRZdkE9VBU4/yhhx6id+/eRe6bENSnXbt23i5BKIXIR7nKm41stZK9fhWBffpftRa5xs+fqP+8iGw2k/nLXC588n6lajG1uYaCQ/srtSZ4dZPLOay9cPh/ZX4n1Z03Fxvil889XJMb56rLx4eIbJRLZKNsfmWMBivJjh07eOCBB9xcjVBdKtw4X79+Pc888wzdu3enfv36REVF0bJlS0aPHs2UKVO4cOFCpQr57rvv2LBhA1OmTKnU6wXluHL2SUFZRD7KVd5s8nZsxZGdVeIs7aam8UT95yWQJLKWLSK/Ej3gfm2vAZuNggN7K/za6ubIywPKHtYuGZ1LiVWm51xt543sapbL6BxWALJWq+t3qAi15eNLRDbKJbJRtszMTG+XIHhBue85/+abb3jnnXc4ePAggYGBrvXtTCYTaWlp7N69mwULFvDUU09x88038/rrr1O/fv1y7Ts5OZkJEybwzjvvUK9evXIXn5WVVeTPRqMRo7HmruMqCELlOfLzKdj7L5Yzp5CtFnQRtTC1bI0+unonTHGH7LW/YWjUBGPDJq7H8vf+i8ZoxNikOZLBQPBNgyk4sIespQtJ+fIT6n02A0kq/xquhvoN0QQFk//vLvzbd/TEr+E2Efc/gj0tDUP9RqVu5xrWXlDxxrnaBA8dDVvAog9k4Ik5dDm3kojgPt4uSxAEQRBUxWw2YzZf+t5wZfvT3crVOO/YsSPHjx/n//7v/5g9ezYdO3ZEo7m60z0tLY2FCxcya9YsWrRowezZsxk9enSZ+x8/fjzNmzfn4YcfrlDxsbGxRf48cuRIxo8fT5cuXViyZAkAHTp0wOFw8PfffwMwbNgwNm/eTGpqKuHh4fTu3ZuFCxcC0LZtW/R6PX/++ScAgwYNYufOnZw/f57g4GD69+/P/PnzAWjVqhWBgYFs27YNgBtvvJE9e/Zw5swZAgICGDx4MHPnzgWgefPmREZGsmXLFgD69u3LoUOHSExMxGg0MnLkSObOnYvD4aBx48bUrVuXjRs3ApCQkEBiYiLHjh1Dp9MxZswYfv75ZywWC/Xr16dx48asXbsWgJ49e5KcnMyhQ4cAuOWWW1i0aBF5eXnUq1ePli1bsnLlSgC6detGZmYm+/btA2DMmDGsWLGC7OxsYmJi6NChg2sWz86dO1NQUMDu3bsBGDFiBOvXryc9PZ3IyEi6devG4sWLAbjmmmuoXbu2a5KLIUOGsHXrVlJSUggLCyMhIcE1UUabNm0wmUzs2LEDgIEDB7Jr1y6SkpIICgripptuYt68eQC0bNmSkJAQtm7dCkD//v3Zt28fp0+fxt/fn2HDhrmO2axZM6KiolxLOVx//fUcPXqUkydPYjAYGDVqFPPmzcNms9GoUSPi4uJYv349AL179+bMmTMcPXoUjUbD2LFjWbBgAWazmbi4OJo1a8bq1asB6NGjBykpKRw8eBCAsWPHsmTJEnJzc6lbty6tW7fmt99+A6Br167k5OSwd6+zF3L06NGsXLmSrKwsoqOj6dSpE0uXOtdo7tixI1arlX///ReA4cOHs3HjRtLS0oiIiKBnz54sWrQIgPbt26PRaFzrWw4ePJjt27eTnJxMSEgIN9xwAwsWLACgdevW+Pv7k5uby5w5cxgwYAD//PMPZ8+eJTAwkIEDB/LTTz8BEB8fT3h4OL//7lzrul+/fhw4cIBTp07h5+fH8OHD+fHHH5FlmaZNmxITE8OmTZsA6NOnDydOnOD48ePo9XpGjx7N/PnzsVqtNGzYkAYNGrBu3ToAevXqRVJSEocPH0aSJMaNG8fChQvJz88nNjaW+Ph4Vq1aBUD37t1JS0vjwIEDgHMJmGXLlpGTk0OdOnVo166dqxegS5cu5OXlsWfPHgzZmXTPvOBcdsxmQ9Zo0Rj0yBeHNsuNmmDvO4i/rDJIklc/IwqzKfUzom4dwn/fxKn2XdgyZ47rM0I3ZTIhZxOJfu5VVmbkYrFYaNCqA7VWLsN8aD9LPp5M+9FjK/QZYYlryMnVv7FSH+jWzwiAv/76y/2fEdk5bF25qsTPiANHj1IbSDqVSN6pUxX6jCjMRi2fESeObifI2ppAfQ7+1mwiC85z7PABArOzy/yM2L59O4CqPiNyc3M5efJkpT4jwPn9Yc2aNWRmZhIVFSW+R7jxe0Rubi5HjhxRxmeE+B5R5HtEbm4u+/fvr/D3CHd8RsTHx5Obm0tGRga5ubno9XrXZGLBwcGuBpEkSYSHh5OWloYsy66OuMIGUlBQEFarlYKCAte26enpOBwODAYDJpPJtW1gYCB2u538i/OUhIeHk5mZid1ux2Aw4Ofn5+qtDggIwOFwuLYNCwsjOzsbm82GXq8nICCAjIwM17ayLJN3cRRXaGgoOTk52Gw2dDodQUFBpKenA+Dv748kSeReXKo0NDSU3NxcrFYrWq2W4OBg17Z6vR6z2eyauC8kJIT8/HwsFgtarZaQkBDS0tIA50zuOp3Ote3l76FGoyEsLMz1HppMpiLvd1BQEBaLpcj7XfgelvZ+A0RERJCRkVHse1ja+63X6/H39y/yfl/+Hpb2fvtfvIXt8ve78D0s6/0OCQkhLy/P9X5f/h76+fmh1WpdfyczMjLYtGkTH3/8sescqA6SXNo0fRdNmjSJp59+muDg4HLvuPBDYPjw4aVu9/PPP3Prrbfy119/0bJlSwDuuusu5s+fX+IskllZWYSEhHDq1KkiNYmec2XYvXs3bdq08XYZQgl8JR9ZlslcNI/UaZ+hCQwkZNhoAnv2QR9bH0mjwZ6VSd6u7WT+uoCC3X8R0OM6op5+CW1gkNdqLk82Wb8tIXnymzT4fhG6WlEAWM+f4+TtI0GWqT97Afralyb5Sf74HbKWLiSgx3XUfvXdCtWTPv8H0mZ9SaOFa5B0ilvco8IyF/9M1rJFBCb0I2zs7RV6rRrPmwcm/UtciI2YvatIOPULIcPHUOuR/3i7LI9QYz6+QmSjXN7M5tChQ9x6663Mnj3b9f1fKCovL8/VEBWqz969e7nzzjv54YcfaNasWbE957GxsWRmZlaobVxe5brn/L///W+FD967d+8yG+Y5OTk88sgjPPbYY9SpU4eMjAwyMjKwWCwArisXJQkODi7yIxrmylDYEyEoky/k48jN5dzLT5Py+YcEDxpG/W9+Jvy2ezDUb+iaQE0bHEJQQj/qTp5CzKS3yf/3L06NvwvzkUNeq7s82WSvWYFf22tcDXOA7NXLQZbxa9+pSMMcIHTEWEwt2xB0Q/H3p5fGFN8K2WzGcuJYhV9bXWS7nZwNa8jd/nuZM9OHDBlF7BezK9wwB/WdN+nzvifhxDwCc5PZE9aZ+Y0fJM1eucmF1EBt+fgSkY1yeTObmJgY9Hq9a+SIcLXCHmehem3fvh29Xk9MTAzg7Py9ss3pSV7tCklJSeH8+fNMnjyZyZMnX/V8WFgYw4YNcw0XEwRBKIs9K5Ozz0/AeuYUtd/4kICupa/TLUkSgb36YGzSnKTXn+fMfx6mznufYmquvCv5tpQL5P/9J1FXrG2es945RLK4CeIM9RtS739fVep4xqbNQaOl4MBejE2aVWofnubIzyPpjRcBaLxsE2i9XJBCpKxaRXzKedLrteVwyHXsjuhKX/knb5clCIIAODvYBg8ezOeff86xY8fo27cvERER6GrAKC13ycjIqPRE20LF2Gw2UlNTWbVqFStWrGDEiBEeb4SXpFzD2svr1KlTyLJMXFxcubYvKCjgjz/+uOrxd955hw0bNrB8+XIiIyNp3bp1kecLh7V7ajiBUDVms1mMYlCwmpyPPTODM0+Px56RTp23/1fhBqUjL5ezz0/AknjC2UBvGu+hSotXVjbp838gdcYXNPxpmWv4vfn4UU49cBvo9UUed5dTD9+BoUlzov/zolv36y7W5POcvG0Y6PU0WbbJY8dR23nz1X9m8GPEWOKsp0mWwijQBfCO/090nnC3t0vzCLXl40tENsrl7WwcDge//vorn3/+ueseYeESWZYrNJGrUHVhYWE8+uijDBkypNj51cDz7VC3Xp5q1KgRsixjs5U+tLCQyWQiISHhqsdnzZqFVqst9jlB+dasWcPAgQO9XYZQgpqaj8NcwLlJz2DPSKfu5C8wxDWo8D40/gHUeetjzjz3GOdeeJJ6n82o1tncy8omZ80KAq7tWaQBnrPB2Wvu37FrqQ1ze1YmmUsXog0JJWTgsHLXZIxvRcGef8q9fXWT8y8uo2Yqe8h23s5tXPj0fQyNm1J70tsVOo5az5siX+t0em+V4XFqzccXiGyUy9vZaDQahg8fztChQ8nIyCAlJQWHw+G1epRmw4YNXHfddd4uwydoNBoiIyMJDQ0tsVFeXdzaOL/jjjvESSWIdRkVribmIzscnH/nVcxHD1W6YV5IExBAndcnc+qxezj3ykTqffRlmetnu0tp2VhOHsd85BBht91T5PG8Hc7RR0F9+pW679zfN5I24wt0taIJ7j+o3BO8mZq3ImvpQhx5uWj8A8r1murkKGycl2PSHNlmxXr2NJqgil/pVtt547hsTJxF61xCLmTULV6qxvPUlo8vEdkol1Ky0Wg0hIeHEx4e7u1SFOWvv/4iPr56R/AJ3ufWSwPTp09n5syZVd7PrFmzSpypXVC+qKiosjcSvKYm5pP+/Qxyt2wg5oXX3XKvuDY0jNqvvYf1zCmSP3wTN979U6rSssleswJNYBABXYreQ1/voy+p/dp7BFzbs9R9B17fH21oGLYL58nZtK7cNRnjW4IsU3DoQLlfU50cFyfM0fiV3Th3rXNuLqjwcdR73sjF/FfNo958aj6RjXKJbJRN5OObKtw437hxY4kN59zcXNe6moLv6tKli7dLEEpR0/LJ+3Mbad9OJ/z2+wjo3ttt+zU2akr0My+Ts341Wct/ddt+S1NSNrIsk71uJYG9r0cyGIo8JxkMBHTvXWavtsZgJGToaAAy5v9Q7gsOhtj6SP7+mA/sLdf21a2w51wqx7B2zcXGuaOg4o1ztZ038sUB7ZcPa6+ma0xeobZ8fInIRrlENsom8vFNFW6c9+nTh3379hX73IEDB+jTp0+VixLUbcmSJd4uQShFTcrHlnKBpLdfwa9DF8Juc/9EV4G9ryd44DBSvvgIS+IJt+//SiVlU7D3X2xJ5wi6/kbXY7LdjlzB24hChoxEMhoxH9pP3s6rJ+MsjqTVYmrWggKFNs7lCgxrl0zOiY8q03Ou5vPGYHeuz5p9cX6CmkjN+dR0IhvlEtkom8jHN1W4cV5ab4vVavX6TfSCIPgGWZZJ/vBNJK2OmOdeda1f7m6RD01AVyua829PQi7nZJfulr1yKbqoGExt2rsey/19AyfvGEnGwnnl3o82NIyQIaMASJv9dbl7z43xrSg4UPxFWW8ztWhN1FMvEDr85jK3lQyFjXOzp8vyusD+gwGwGAK4/uxCXtl2D7WTdnu5KkEQBEEQSlOub7NZWVkkJiaSmJgIQFJSkuvPhT8HDx7km2++cS3YLviuDh06eLsEoRQ1JZ+sZYvI2/EHUU+9gDY0zGPH0fj5Ef3ca5iPHSX9p+88dhwoPhtHXi7Z61YRfNMQ1wUIWZbJmD8H2/kk7KkpFTpG6M23OXvPD+wtd++5qVkL7KkXsKWlVuhY1UFfpx7BA4YS0K1XmdtqTJUf1q6286ZJkzACbdmEaM0EWrOok3cSg+Sdi0vVQW35+BKRjXKJbJRN5OObyjVd70cffcR///tfACRJYsSIEcVuJ8syL7zwgvuqE1RJzNivbDUhH+u5M6RM/Z+zUda1e9kvqCJTs3hCx9xK2nfTCexxHYb6DT1ynOKyydmwBtlcQNCNg1yP5e/aTsG+3UgGIyHDx1ToGLqwCEKG34w9NQVD3dhyvcbYpDkA5iMH0XXx/PvtKZKfP/o69ZBMJmS7DUlb/gVL1HbeXNtERy3bBepoLd4upVqoLR9fIrJRLpGNsol8fFO5vpn079+fwMBAZFnm2Wef5bHHHiMuLq7INkajkTZt2oj1+AT+/vtvWrRo4e0yhBKoPR/Z4eD8+2+gDQ0l8qEnqu244bffS+6WDSR/+BZ1P5yKpNW6/RjFZZO5/Ff8O3VFH+UclSTLMmmzvwYgeNBwdBGRFT5OxL3jkSSp7A0v0sXURhMYhPnwwatmi/c285FD2NLTMMTVL3NNem1AIPW/mV+p46jtvMlYMJeepw6TYbiWQyGtyW3gz012GzV17l+15eNLRDbKJbJRNpGPbypX47xbt25069YNcM7Ifv/991OnTh2PFiYIglCczF/nU7D7L+p88Hm1rrutMZqIeuoFzjz1EJm/zid0xFiPH9N8/Cjm/XuImfSW67H8v3a4es3Dxt5eqf1e2TCXZbnUxrokSRibNMN89FCljudJGb/MJXvlUiLuHU/YuDu8XY5ipPz6C52SkthYtwVHQrrxd2RPOsnln59AEARBEITqV+EZlF555RXRMBdKNWzYMG+XIJRCzfnYLiSTOmMqwYNH4N+uY7Uf369Ne0KGjiZ1xhdYk866ff9XZpO19Be0oWEEXHvpfuq072YAle81v5z1/DmS3niRtG+/LnNbY+NmmA8frNLxPMGRlwuAJqDkCzWO/HyS3nyJ42MGcO7VidjS0yp8HLWdN8vDB/FE76X8ZWh5aQ21GryWmtry8SUiG+US2SibyMc3latxPnv2bFJTU13/XdaP4Ns2b97s7RKEUqg5nwufT0bj50fEveO9VkPEvQ+jDQoh+aO3yz3beXldno09J5us35YSPGgEkl4PgPnYYQp2/w16PWE3/1+Vj2c+sI+cDWvImPtdmUvFGZs2x5Z0Fnt2VpWP606O3BwANAGBxT4vOxycm/Q0udt+J+jGweRu28LJ24ZjPnq4QsdR23njuPhXU3KteA5yBW5lUBu15eNLRDbKJbJRNpGPbyrXsPa77rqLP/74g4iICO66665St5UkiTvuEEMLfVnhhRxBmdSaT87vG8ndsoHol95AGxjktTo0/gHUevI5zr3wJNm/LSX4psFu2/fl2WQt/xXZZiVkyEjXY8ZGTan3+SznxGyRtap8vIDe1+PXoQv5u7Zz/r3/Uu+jL10XAq7kmhTu6GH821f/qIWSOHIv9pyXcItD9url5P/9J3Xe/RT/Dp3JXrMCe8oFslb8Sq1H/lPu46juvLmsIZ6nd164CBlTudsg1EB1+fgQkY1yiWyUTeTjm8rVc378+HHat2/v+u/Sfo4dO+bJegUVCA8P93YJQinUmI8jL5eUzz7Av3M3Anvf4O1yCOjcjaB+A0n58n/YUi64bb+F2ch2G5mL5hHUp/9VQ9dNzeIJGeieoW6SJBH99EvOyd4O7uPClA9LHA2grxfnXILtiLKGtl8a1n51z7lss5E6YyqBCX3x79AZAG1QMADZa1YgW63lPo7azpviYqzBo9pVl48vEdkol8hG2UQ+vqlcjfP69etjMBhc/13Wj+Dbevfu7e0ShFKoMZ/U2V9hz8qk1uPPVGiWcU+KfOgJJIOB5I/fcdvw9sJscrdsxHY+iZARN7uekz20pIquVhTRz70KkkTWkl9In/NNsdtJWi2GRk2V1zgvHNZeTM957pYN2FMvEHbLna7HJJOf83XZ2eRsWlvu46jxvCmkjDPGs9ScT00nslEukY2yiXx8U4UnhBOEsixcuNDbJQilUFs+BYcPkPnLT4TfcT/6GOVMRqkNDiHqiYnkbdtC9sqlbtnnwoULkR0O0r6fiV/7jpiaxgPO2dRPP3oP5ye/iS3d/cPcArr2cC1LlzZzKlkl/D7GJs2wHFHWjO2lTQiXueQXTK3aYmzU1PWYxmgCQF+/IVnLFpX7OGo7bwrvL5cAoy0PgOzN671XkIepLR9fIrJRLpGNsol8fFO57jm/0nfffccPP/zAyZMnyc/PL/KcJEkcPXrULcUJguDbZLudCx+/i6FBI0JHjvN2OVcJ6N7bObx9ykf4d+iCrlbVV5HO2bgGy7HD1P3oS9djlpPHMR8+gPnEUWo9NKHKxyhO6Mhx2DPSyV63ElN8q2K3MTZpTtbShTgKCtCYTB6poyJkWabWI//BkZeLNrTo8D9bagr5f+8k6umXijwuXazb2DSenLW/Yc9IRxsaVm01V5eA3jfAPrDo/el2ahWdk9YQq20BeP+2EEEQBEEQilfhxvm7777L888/T8uWLWnXrh1Go9ETdQkq1rZtW2+XIJRCTflkLv4Z8+ED1Pv4KyRdpa4lelzkwxPI27WD5A/fovZbH1Vp2H3bVq1I++gN/Dt3w691O9fjuZvWAeDfsUupS4ZVVfjdDxE65jbXfdlXMjZuCg4HlpPHMDVv6bE6ykuSJIIHDC32udzfN4BWS0C3XkUeL7yoYKgX69xu66YS93E5NZ03AE2aRuK/O5VAo40QazoNsg/iLzX2dlkeo7Z8fInIRrlENsom8vFNFf62O23aNB555BE+/fRTT9Qj1AD6EmZ7FpRBLfnYUpJJnTmV4EHDMbVs7e1ySqQNCibqyec599JTZP7yE6Ejx1Z6X/pd27CeTiT6hf8WeTxns7NxHtizT5VqLYskSUUa5tZzZ9HF1HZdcDDUbwSShOXYEUU0zkuTs2kdfu06og0OKfK4NiISXUwdtKHhmFq3I2fLhnI1ztVy3hS6vpWO7+ZeoE6A2dulVAu15eNLRDbKJbJRNpGPb6rwPedJSUmMGDHCE7UINcSff/7p7RKEUqglnwtTPkJjNHl1TfPyCujanZBR40iZ9gn5+3ZXah/27CzsP/9AYEJf173mAJYzp7AcO1JsL7Anpc/9lpP3jiV346VJ0zQmE/o69TAfV8atS/bsLHJ3/EHB4QNFHnfk5ZL/718E9rh6Mp1aD02gwbcLCBk0nIDO3cj/9y9km63MY6nlvCmUufhnrj2zHJM5kxOBTVkRN47zjuJHRNQEasvHl4hslEtko2wiH99U4cZ5x44dxT3lgiB4VO62LeRuWkfkQxO8uqZ5RUTe9yim5i05/8aL2NLTKvz61K8/R2O3E/ng40UeLxzSXlwvsCc5zAVgtZI6c2qRxquhURMsx49UWx2lsRw7wrkXJnD+7VeKPJ7/zy6w2/HvdG2pr/dr3xE5P4+CQ/s9WaZXpM6ZTZ/En/EryOBocCt+aXw/5xDL8giCIAiCklW4cf7hhx8yefJkcTVHKNGgQYO8XYJQCqXn48jP58Kn7+PXoQuBffp5u5xyk3Q6ol98A9lm49yLT+HIzS33a3N+30jWskWE3vMQusiik8rlbFwDQGAvzw5pv1LY6FvRhoZhPXOK7NUrXI8bGzbBfOyI25aPq4qSZmrP27UDXUxtdLXrlvp6Y9PmaPwDyP9rZ5nHUvp5c6X50bfwUJ81/KNtDjizUkJmnqK2fHyJyEa5RDbKJvLxTRVunN99992kpqbSpUsX6tatS9u2bYv8tGvXruydCDXazp1lf9EVvEfp+aR9Nx17Wpqi1jQvL31UNHXe+hjrmVOce/VZHJay7/c1nzhG8ruvEdC9N3vDoos8J9vtBPTsgz6uQbU3zjX+AYSOvhWAjPnfu9ZZNzRqgiMrE3ua+5d0q6iS1jjP27Ud/w5div37k71+FafG30nKV58iaXWY2rYn/5+yLzYr/by5kkzhUmryZeucq+t8qgi15eNLRDbKJbJRNpGPb6pw4zwiIoLWrVvTu3dvmjVrRkRERJGf8HAxbM7XnT9/3tslCKVQcj7m40fI+HkOYbfdhaFurLfLqRRjk2bUfv0DCvbt4exzT2DPzECWZXI2rePMs49y9vkJZG9YDYAl8QRnn3sCXXQM0RNf4XxycpF9SVot4bfeRdzXc9CGhFb77xI8eASSvz+Wk8fJ27YFAGND54zf5mPeH9p+qec80PWYLT0Na+IJ/Np1LP412dmYDx/EeuY0AH6t2lFwYB+y3V7qsZR83hTn8j7yHL3zdojg4ZWfrFDp1JaPLxHZKJfIRtlEPr6pwrO1r1+/3gNlCDVJcHDNnXSoJlBqPrLDwYWP30Vfpx5hY/7P2+VUiV/ba6jz3qece+VZEh/4P/zadyBn7UrX80E3DiZr5VJSPv8QbWQtwm67h4xF82m4dw85v9cloEt30GpdPb/eGkGgDQgkZPAIMn76nvSfviOgWy90MXWQTH5Yjh8hoHPp93R7mv3irQOX95ybD+wFwNSqTbGvkUx+ADgKCpzbtWiNnJ+HJfE4xoZNSjyWUs+bMl3+V0er9VoZnqbafHyAyEa5RDbKJvLxTcpcOFhQtf79+3u7BKEUSs0na/mvFOzbTd0PpiAZDN4up8r8WrUlbuq3nH3xSVfDXF+nHprgEFK/+gxbchIBCf3I+2MT5994EYBIIGnbJjRBwUhGI5EPPk7gdX29Orw/dMQ4MhbMxXxwP9aks+hj6mBo2BiLAmZsd+RkA6AJvNRzXrBvD9rwCHRRMcW+RmMyAiAX5ANgbNYCNBoK9u8ptXGu1POmJHIxQ9hr7h3n6svHl4hslEtko2wiH99U4WHtGzduLPNH8G3z58/3dglCKZSYjzX5PKnTPiXoxsH4tevg7XLcxnxoP5YTxwAwNG2ONrIWksFAQPde1Pt0OrVffB1jk+boYuoQeN0NXGjWCm1oGI7sLOwpF0ib+SWO7Cyv/g66yFpEP/cq9b9dgD6mDuAc2q6IYe0XG+eXr81esH83phatS7ygUdhzLpudPecaPz8MDZtQsH9vqcdS4nlTHhJgsucBkLPtd+8W40FqzccXiGyUS2SjbCIf31ThnvOEhIQye3HsZdy7JwiCUEiWZZI/fAvJz5/Ih57wdjmVYk06S+bSheCwEzJ4FPradbBnZ5H01svgcBDUfxBRT79U7GdnnXc/QWNw9uaumzOHa0ePJn/vv8gWs3NSM533BzgFXde3yJ8NDZuQtXIpss3m1foC+/RHH1sfv5ZtAZDtNgoO7iP89vtKfI3mimHtAKb4VhTs/dezxVYzv6494RhYdH50PLORDufX00iOA65e+10QBEEQBGWo8LeqdevWXfVYSkoKixYtYsuWLXz++eduKUxQr1atWnm7BKEUSssna/ki8v/cRu03P1TNmuaXs5w8zplnHsF+cW3zkCGjAGdvbuB1fXFkZxH11PMlXtQsbJiDMxtJr8e/ffGTmSmB5XQixkZNwGZz/neDRl6rxb99xyLvleX4UeSCAkwtW5f4GsloAi71nINzSbWs5b/iMBegufj8lZR23pSlcbNamA5n4GeyE2pNo3nGPwRSy9tleYza8vElIhvlEtkom8jHN1W4cX7dddcV+/ioUaN46KGHWLFiBTfddFOVCxPUK/Cy+z8F5VFSPtbz50j58hOCbhrinARNhVK+/B/29DR0MbUJTOjnGvoNUOuRp5CMJqRyTsSlpGyuJNttnJv0LHnbf6fO+86LsJZjR7zaOL9Swf49oNVibBpf4jYaf380IaFogkJcjxmbNAOHHcuJY5iatyz2dUrOpjhDOuhZsDCZuoEFuGaFq8HrnKstH18islEukY2yiXx8U4XvOS/NiBEj+PHHH925S0GFtm3b5u0ShFIoJR/Z4SD5gzfRBgSqdji7+cQx8nb8AZJE3Xc/JfLe8UWe1/gHlLthDsrJpjiSVocmyDmyIW3mVLSRtTAf9+5953n//EnB/j04LvaCF+zbg7FxsxJ7vwEM9eJoNH8FcV9+e+mxBo1Ao8V85FCJr1NyNsXJWv4rnc6twWDN4axfLOvqDiNJDvN2WR6jtnx8ichGuUQ2yiby8U1ubZynp6djNpvduUtBEGqo9Lnfkv/Pn0Q9/RLaAHVeHc769WcAAnpch75OPS9X43mR9z6C5OdPwb7daIOCvT5j+7mXn+H04/dhS7kAQMG+3aUOaS+JxmjCEFcf85GD7i7Ra1KmT+HGEz9gNGdzNLglPzZ7nBNS8TPYC4IgCIKgDBUe1p6YmHjVY2azmX///Zfnn3+ea6/17rq3gvfdeOON3i5BKIUS8snf+y9ps6YRNvYO/Dt08XY5lSLb7eRsWgtA8MDhbtmnErIpja5WFOF33Efql59gPXMKe5b3ZpKXbTbkfOcs5NqgYOxZmVjPnsbUouKNcwBj42al9pwrPZsrzal3D5va9aWZdMa1qJpcg4e1qy0fXyKyUS6RjbKJfHxThXvOGzRoQMOGDYv8xMfHM2bMGEwmE5999pkn6hRUZM+ePd4uQSiFt/OxZ2dx/q1JmOJbEn7n/R47jmy3YUtJxp6ZgWy3uX3/juwsTC1aow2PxP+aTm7Zp7ezKY/QETdjaNQE2WLBnnoBu5eWerv8uJqAQFfDurT7zQudfWECpx6529XjDjjXbj95vMQGrBqyuZxN0mPVGpEvm4iwuLXPawq15eNL1JSNLMvsP2Pnx60WXltQwDM/5PPE7HzeWFjArI0W/jlpx+6oORe51JSNLxL5+KYK95zPmDHjqlmHTSYTDRo0oHPnzmg0bh0pL6jQmTNnvF2CUApv5iPLMsmT38SRl0v0C194ZBmuzF/nkz7vB2zJ58FxaVlHfWx9TC1aEzJ8DKZyNODKog0No/Z/33frcmJqOHckrY5ajz/LmQkPAJC9diWhw0ZXex2F679rAoOQtFrMRw8hmUzlur2g4OB+HFmZ2HOy0UU6ZzA3NGiEnJ+H7UIy+qjoq16jhmwuV9h8kCSJHEMoAMGDRnitHk9TWz6+RA3Z2Owyq/bYmL/NyokUGZMe4utoCPWX0GkhOVNm13Er3262EuIHN7XTM7qLjvBAdX/nVUM2vkzk45sq/I3yrrvu8kAZQk0SEBDg7RKEUngzn/TvZ5K7ZQMxr76LPrq2W/YpW60ASHq98wGdDlvSWed/a7SuBrr11Emsp04SclkDxWEuQDIYS1zmrDzceYFBLeeOX6u2BN00hOwVi7GcvvpWp+pgz8kGnI1zAPPRQxgbNS3XBHwaf38cWZk48nJdjxniGgLOpfGKa5yrJZtLLusxL/z7fdmyfTWN+vLxHUrP5nCSnQ+WWjh63kG3ploe7a+nbZwGrabovwsOWebgWQfr99tYvMvKgh1WRnTWc0dPPX4GdY5KUXo2vk7k45vc320l+LzBgwd7uwShFN7KJ2fTWtK+mUb4nQ8Q2KP4JRkrqmD/HpI/fIuQoaNc64sH9khAVysaY8MmaMMjQHZgz8zEfPgA5kMHMLa4tG5oypefULDnH0KGjCLohhvR+JfvH0JrchLYHehr1yl74wpQ07lT66EJFBzYC1aLV45f2HOuDQoGwHLkEH5tO5TrtYU5y3l5rsd00TFIRiPWxOPQ+eq5U9SUDYCjmCHsNWcw7tXUlo8vUWo2siyzYIeNqWss1I+U+PxuE81rl3xxTyNJtKirpUVdLbf3NLBgh5Uft1pZu9fGEzca6N5MfV+plZqN4CTy8U3qHo8jKNLcuXO9XYJQCm/kYz5ykPPv/ZfAhL6E3XZ3lfcn2+2kzvqS00/cj+XEMbJWLnU9pw0JJaBzN3SRtZA0GiStDl14BAFdexB++72uXnLZZiN383osx49y4ZP3OH7LEJI/eQ/z0cNlHj9j7necvGMkqbO+rPLvcjk1nTuagABMjZt5bcZ217D2oCAcBQVYTp3E0KRpuV6r8fN37iP/Us+5pNFgiGuA5cSxYl+jpmwuJwEmm/P3zNu1w7vFeJBa8/EWhyyz7YiNycvMPDsnn7cWFbBytxWLzf2XcJSYjd0h878VFqastjCqi44v7vErtWF+pUCTxB29DMx4wI/G0Rpenm/mo+VmCqzqugSmxGyES0Q+vkl9l/kEQVAVa3IS5yY9gyG2AVH/ealKQ8gB7Lk5nH/7FfK2bQEgqN/ASq2TLul0xE3/kexVy8lc/DPW04lkLV5A1uIFGONbETb6VgKvu+Gq19nS08j6bTEAfq3bV+l3UTtDoyZkb9lAxq8/o/HzI7jfwGo7trFpPBEPPo4uohaWE0fB4cDYuHm5Xqvxv9g4v6znHJxD2y2JJ9xdqleY2nWEs2DT+9Hm/A7aJ62niSUK6Obt0gQvO5/p4J1fzfx7ykFchET9SA2n02TW7rUwa6OVpwca6dCw/A1VtbE7ZN5aZGbTQTtPDTQwqL2+0vuKCdXw5hgjS/6y8cVqC3tP23l9jInaoaLvSxCEyhGNc8Htmjcv3xdkwTuqMx9bWipnn30MtFpq//c9NCZT1ff33ONYjh9FMhiJeup5gm64qdL70wYFEzpyLCEjbib/r51kLVtIzpYNmA/sxXzssKtxLtvtIEkgSaTN+ALZbMbYrAV+Hd27DJzazh1Dw8ZQkE/Kp++jDY8k8Lob0FTTfc2G+g0x1HfeJ5655BfQaDE0bFSu12r8nMPaL7/nHJyTwuX+sRlZlq+6iKS2bBo2j8J4KgujP4RZU2mTtp0Aube3y/IYteXjLYkpDp7+oQCtBt67xUSHBhrX3/WTKQ4+/c3Ms3MKGN/PwMjOlW+0Xk5J2ThkmfeXWth4wM4rI430bF71r8GSJDGkg542sVpenl/A+Jn5TBph4poGyr/AoaRshKuJfHyTaJwLbhcZGentEoRSVFc+9qxMzk58HEdBAfU+moouMqpK+3Pk5XLmqYewnjmFNjyS2q9/gKlZ1WddB+eXK/8OnfHv0BlbehrZK5cSmNDX9Xzu7xu58NkHSAaja7K58LseqPIogCup7dwxNmwCgCYkFHtaCtkrFhMytPpnbjcfOYQhrkG5LwxogoLRBAU7L7hcxhDXAEduDvbUFNcs7oXUls0t3QysWJJEnQigBi+hVkht+XhDeq7Mc3MLCDLB+7earpppvH6khvduNfHVWiufr7IgyzCqS9Ub6ErKZuoaC2v22Hh+qHsa5pdrUEvD53f58fovBTw7p4DH+hsY2tE9Fzg8RUnZCFcT+fgmr4+7+fvvvxk0aBBxcXH4+fkRHh5Ot27d+O6777xdmlBJW7Zs8XYJQimqIx97ViZnn5+APSONuu99ir523SrvU+MfQGBCP3TRMdT7aKrbGuZX0oWFEzb29iKzyedsWY89LdXZMNdqiXrqBQI6u394sNrOHW1EJJqgYEzxzkn2MhbOK3GdcHcrOHyAggN7sedkO2dqb9Ks3K+NmjCRRgtWEjr85iKP6y/2xFsSj1/1GrVlk716Oe0ubEZny+eCKZotMTdxjnBvl+UxasunujlkmbcWFWC1wdvjrm6YF9JIEg/eYGBcNz1TVlvYfNBW5WMXl82hc3amrDJzOs1R5f2X17K/rfy83cYj/Qxc38ozfVPBfhLvjDMxrKOO//1m4ev1lmr7TKwMcd4om8jHN7n102nTpk3Iskzv3uUfOpeRkUFsbCy33HILdevWJTc3l++//57bb7+dEydO8NJLL7mzREEQPMyafJ5zL0zAlp5G3Xc/xRDXwG37Dr/zfkJHjXPN0F1dop56gZDBI3FkZ2Fs3hJdeES1Hl+pJEnC2KgJklaH5OeP9dRJ8v/+E/9rOnn82KnTPiX/7z+JmvgqluNHip0foKL0MXWQ9AYsJ4/j38G9tyxUt+RP32doXh6rmjXneEBz/oi8nnstiyjffPY1T1qODMiqX5e6sn7908auEw7eu8VEVHDZ78F9CXrOpDl4b4mZhrU01A137/v2y04bK3fb+CfRQe94LXXCNPRp6bnBnHtO2fnfCguDr9ExrKNnB41qNRKP9jcSHaJh6hoLKdkyTw80oNPW/BEsgiBUnVs/oa6//nocDgd2u73cr0lISCAhIaHIY4MHD+b48eNMmzZNNM5VqG/fvmVvJHiNJ/MxnzjGuRcmgFZLvf99haFeXJX2Zz1/jrRvvqLW48+iMZmQJKnaG+YAGoMRv9btPH4cNZ47hoaNyftzO0F9b3JOqLf0l2ppnNsz0p3/YbM65wBoXP6e85JIWi362PpYTp646jm1ZfNtg0fYFdaNZo70yx5Vbg9eVZWWz6EkO09/77zPetaD/oT4+1YjKS3HwfT1FoZco6NjOSd6kySJpwcZGT8zn1cXmPnsThNGfeXetyuzsTtkthxy9sjHRkjM2GClaxOtxxrnWfkybyw006Kuhsf6G9x+O1JJxnTVExEo8e5iMxm5Mq+MNCpuPXS1fa75GpGPb3LrpdCXX36ZSZMmuWVfkZGR6HTilng1OnTokLdLEErhqXxyd/zBmScfRBMUTL2P3dMwP/P0eLJXLePC55PdVKWyqfHcMTRsgvXMKYL6DgAg9/dN2C8uc+ZJhY1zW1YGAMZGTcr92ryd2zjzzKOkfPXpVc8Z6jfEcvLq5dTUlk2B1o9cQwgO+dI/83INvve8pHwsNpmXfjKTa4asfPh5u7WaK/O+GRus6LRwT4KhQq8LNEm8MsrEqVQHszZV/n27Mpt9ZxzkmiHYD4Z2cN6TfSTJM8PbZVnmw2XOJc5eGGas9t7r61vpeGecib2n7Tz1XcHFERzKobbPNV8j8vFNbm2cT5o0iVdeeaVSr3U4HNhsNi5cuMCUKVP47bffmDhxojvLE6pJYmKit0sQSuHufGS7ndTZX3HuxScxtWhF3Q+noouo2iQmzob5I9iSzqGvU4+IO+53U7XKpsZzx9iwMTgcoNVhbNocvw6dsWdlevSYst2OPTMDAPuFC2gjaqENCS336+1ZmeT/vRPzoYNXPWeo36DY5dTUlo2rIa6RyDaGARDUb5AXK/KskvLJzJeJi7jUIPtlpxWzytairopTqQ5++9fG//UwEOxX8YZp4ygNd/TSM3+blYPnyj8q8nJXZrP9qHM/nRpqaRqjQQJSc2TSctzfQF/2t41NB+38Z6CxXMP5PeGaBlo+vt1Eao7M47PzOZVafffZl0Vtn2u+RuTjmxRz89X48ePR6/VERUXx5JNP8sknn/Dggw+W+pqsrKwiP2azuZqqFUpjNFbPUkpC5bgzH1t6GmdffIr072YQfsf91H7jQ7QBgVXap/n4Uc489TC2pLPo69Sj7gdT0NWq2kzvaqHGc8fQoBFIEtYTR6n3yXTqvDEZQ91Yjx7TnpUJFydZspw7XaFec7hsnfP8vKue09eNxZGVeVXvvxqzAec87bLGOZRZ8vP3bjEeVFI+tYI0fHCbH6ue9yciUCLPAoc81EurRN9vsRIeKDGkQ+VHIt7cVU+jKA0fLLVgs1f8wsaV2fxxxNk479xYi59BIvbixZPDbs4lMcXB56ssDGqvo1e8d0diNo7W8umdJvRaeGx2PntOVe5Ch7up9XPNV4h8lMFsNl/V5vSkSn1aZWVl8fnnn7Nu3TpSU1OJiIigT58+PPzww4SGhlaqkBdeeIH77ruP5ORkFi9ezKOPPkpubi5PP/10ia+JjS36BXDkyJGMHz+eLl26sGTJEgA6dOiAw+Hg77//BmDYsGFs3ryZ1NRUwsPD6d27NwsXLgSgbdu26PV6/vzzTwAGDRrEzp07OX/+PMHBwfTv35/58+cD0KpVKwIDA9m2bRsAN954I3v27OHMmTMEBAQwePBg5s6dCzjXKYyMjHTNuti3b18OHTpEYmIiRqORkSNHMnfuXBwOB40bN6Zu3bps3LgRcN6Tn5iYyLFjx9DpdIwZM4aff/4Zi8VC/fr1ady4MWvXrgWgZ8+eJCcnu4bB3HLLLSxatIi8vDzq1atHy5YtWblyJQDdunUjMzOTffv2ATBmzBhWrFhBdnY2MTExdOjQgWXLlgHQuXNnCgoK2L17NwAjRoxg/fr1pKenExkZSbdu3Vi8eDEA11xzDS1btmTOnDkADBkyhK1bt5KSkkJYWBgJCQn88ssvALRp0waTycSOHTsAGDhwILt27SIpKYmgoCBuuukm5s2bB0DLli0JCQlh69atAPTv3599+/Zx+vRp/P39GTZsmOuYzZo1Iyoqis2bNwPOuRCOHj3KyZMnMRgMjBo1innz5mGz2WjUqBFxcXGsX78egN69e3PmzBmOHj2KRqNh7NixLFiwALPZTFxcHM2aNWP16tUA9OjRg5SUFA4edPa+jR07liVLlpCbm0vdunVp3bo1v/32GwBdu3YlJyeHvXv3AjB69GhWrlxJVlYW0dHRdOrUiaVLlwLQsWNHrFYr//77LwDDhw9n48aNpKWlERERQc+ePVm0aBEA7du3R6PRsGvXLsA5X8P27dtJTk4mJCSEG264gQULFgDQunVr/P39MZvNzJkzhwEDBvDPP/9w9uxZAgMDGThwID/99BMA8fHxhIeH8/vvvwPQr18/Dhw4wKlTp/Dz82PYsGGsfPu/xP2+Dq1Oh/GpF/ktPRvmzqVPnz6cOHGC48ePo9frGT16NPPnz8dqtdKwYUMaNGjAunXrAOjVqxdJSUkcPnzYuVZs4wacfnUiWosZW0Qtgl94g3mr1wDQvXt30tLSOHDgAAA333wzy5YtIycnhzp16tCuXTuWL18OQJcuXcjLy2PPnj2uz4Y1a9aQmZlJVFSUYj8jCrNR3WdEZC3O7tjGX2nZ5fqMAPjrr78q/RmRuX8PrQFNcAgZe3aT1qgZF/75p9yfES10EoFARtI5Ns+ZU+QzIiQznWbAitmzyAqv5fqMKMxGLZ8RjottKIvV6pwtWoLtO3aS0LR1mZ8R27dvB6jSZ8Tw4cP58ccfkWWZpk2bEhMTw6ZNmwCq9Bkxbtw4Fi5cSH5+PrGxscTHx7Nq1SoATp48WepnRJNaHUjN0fDD0j+5r1+EKj8jKvI9Yvnabaw+1Y9bOlv468/dlf6MWLrkV1prdSw6ex3fbcjEeH55hT8jjhw5QkFBAet3nuRYcgI6LeSe3MCcPRfwd3QHIlm4ehfHdhx1y2fE2XNJLD2fQK3gECLTFzFnjl0R3yNua96Qhcdb8tR3uSTU2sX/9W/k9e8R+/fvr/D3CLV+Rqjxe8SxY8dEW8MD3yMq0tb4+OOPXedAdZDkCq7xcPz4cfr06UNiYiL169cnJiaGpKQkTp48SWxsLOvWraNRo0ZVLuzhhx/m66+/5uzZs9SqVXS92aysLEJCQjh16hTBwZcmhzIajeIqkwLMnTuXsWPHersMoQRVzceWlsqFT98nd/N6AnpdT63HnkYXVvUlmmSrlZP33Iwt6RymttdQ+5V30AaHVHm/aqLWc+fcqxNx5OdR913nPdzW8+ewnk7Ev2NXjxwv76+dnH32UfT14rCeTiT6+dcIuv7Gcr/efOQgpx6+E21ELRr+uLjIc468XI4Nu4Ho514l6IabXI+rLZtnnlrBrshetDec5mSuH+n6CO6vt59xd3h+sj5vKCmf7HyZoIvDuedts7J6j42hHXUMaq/s9afdYeYGCz/vsPLjo/4Emkoe0m53yKTmyIQHSKXek/3Jb2ZW77HxzUP+hAWUvN2ZNAfr99vIs0Dz2hrO/L2AW8Y5ly3ccsjGh8vMtI3T8spIEwAz1lv4/ncrg6/R8eQA93yHW7DDypRVFv53h4lW9co3CV51sdhk3l9iZt0+Ow/eYGB0F121TVJ3JbV9rvkakY8ymM3mIqOzs7KyiI2NJTMzs0g71F0q3HP+xBNPUFBQwJYtW+jW7dI6v7///jsjR45kwoQJ/Prrr1UurEuXLkydOpVjx45d1TgvFBwc7JE3Ragah8N3hgyqUWXzka1WMhb+RNp305H0BmJeetMty1cVkvR6oie+Svbq5dR65D9I+pr/5flKaj13DA2bkLXEeVU5f88/nHnqIbRh4TT44Vckrfu/GOvr1CXyoSewpVwgY/4PGBpWbFh74fBuR37uVc9p/APQhoVjOXOqyONqy8bYvCWkgl1nokXWP7Q+t4lmuYFAzWycF5dPVr7MiI/yqBcu8dV9fozpqmdMV9/4XLHYZJb8ZeWmtroSG+a5Zpmf/rCy5C8rGXngb4AJA4zcUMIa4Hf2MrB2r42ZGyw8NfDqRrTNLjNnq5VvN1uxXxZHoK4Phu1WBrbX0aOZjq6NtWQXXHq+brizvjNuWvP8fObF2ek76MrVMD+a7GD9PhtHzjvIt8i8f6sJvQcnjjPoJJ4fZiQ6xMrUNRaSMhyM72dAq6n+BrraPtd8jchHGaq787fCjfO1a9fyv//9r0jDHJxDRd544w0mTJjglsLWrVuHRqNxSy+8UL0aN27s7RKEUlQmn9wdW0mZ8hHWs2cIGTqS8Dvud8uSZrm/b8SRl+ua6duvdbtqWbJMqdR67hgbNsaekY4tPRVT85ZogoKxp6WS//dOj/Se66NrEzrqFjIWzgO9HkNs/Qq9vvCeczk/H9nhQNIUnX5FExxC5qL55G5cS+23PkIfFaO6bOIaR7IzOR+9XiLUmk7HCxvxb3Ctt8vymOLyOZvu/GJbYHU2iHzJ2r02MvNgeKerL0bIsszafXamrraQlntp8GSeBd5fYqZZjIbYiKunJArxl7izl4HPV1kY2lFHk+iiDd/EVJnZm6w4ZGhfX0PdMA2bD9rIzPdnymoLN7Z1fuXUaSXCAi697tomOqbfr6V2aNUzkmWZT36zEGCUuLeM2enPpjuYstrC1sOX7v8OMFKkYT5rowWzDXo209KstsZtjXaNJHFfHwPRIRKf/Gbh+AUHLw03ER5YvX9P1fa55mtEPr6pwo1zo9F41b3eheLi4ip8ZeGBBx4gODiYLl26EB0dTUpKCvPmzWPu3Lk888wzJfaaC8pVt25db5cglKIi+VhOHiflq8/I27YFv/YdiZn0FsYK9lIWx2EuIHXaZ2T+Oh/JaMQY36rKS6/VBGo9dwwXJ2SzHD+Kf4cuBF3Xl8zFP5O95jePDW13Hu8IhriGSBVcdlPjHwCShCY4BNlcUGSiNFmWsZ1PQi7Ix5KVSebiBUTeO1512dzXQ2LT2rPU8TPh6nupwZOUF5dPUobzF44JKdrgsdll7A4qvW63Gvy6y0aXJlrqhV/dyJ65wcr3vzuXRqsbLnHvdQa6NdWyeJeNbk211Akrea7gIR10/LrLyucrzdzS3cDmg3aeHOBcO7xRlIb7rzcQEShxfUstkiTxSD8DP21KYe3hAE6mOIrtyQ7xl9y29vzGA3b+OGLntVHGUofyr91r48PlZvItoJGgRzMtHRtqiQq+9Bq7Q2bRn1ay8uGnP6xoJIgJlfA3SGg10DRGU2QY/k/brIT6Q8eGWiICyzff8pAOeupHavjvL2YenpnPKyONtKxbfcPw1fa55mtEPr6pwrO1Dxs2zHXj/JXmzZvH4MGDK7S/bt26sX37dh555BH69u3LfffdR1JSEt9++y3vvfdeRcsTFKBwgglBmcqTjz0zgwuffUDiA/+H5eRxYl5+izrvfeaWhrnl5HFOP3Yvmb86JzwJGTIKfXTtKu+3JlDruaOvXRfJaMRy/CgAgX2d92rnbF6PIz/f7ccrOHyAgv17KDh8sMIztQNojCYaL99Mo/kr0Fwxg7k18QRywaWac9auRHY4VJdNzuZ1tEzbgdZuJkMfzs5a13FOivB2WR5TXD7nMp2XJWIu65H95DczA9/PY/k/tmqrrbqdTHFw8JyDge2Kv2g1vJOO2qES91yn5+v7/LiuhQ6DTmJUF32pDXNw9no/cL2ef0/JPD/XzNK/bZy4cOmqz81d9dzQ6tI91Ea9hO78amY+6E/Lup5dICinQOazlRZ6NNPSs3nJF+y2HbHx5iJnw7xNrIbp9/vx6igTQzro6drk0utkGSbcZOT6lloCjOCQ4Wy6zJHzzvf38iXRZFnmu80W3l1s4eZP8rn/63y+Xmfh30Q7dkfpV8XaxmmZeo+J6BCJJ78t4PstljJf4y5q+1zzNSIf31Su7obCGRwBbr31Vu69917GjBnDrbfe6poQ7vvvv2fnzp1Mnz69QgXcfffd3H333RWrWhAEj5CtVjIWzSP9+5ngcBBx78OEDr8ZyVD68MDyyl77G8kfvoVsNqMNDSPq2UkEdO5W9gsFRZO0Wgz1G2E+dgQAU4vW6GrXxXbuDLlbNxF0fX+3Hi9txlTydv4BOh1BffpVah8l3Quf9+e2S9v4+2NLTqJg37+VOoY3JX/4FmNsNla3acVx/yb83roPtxYsoaO3C6tGl3rOLzUK/QwSdoezAVtTrdpjI8gEXRpf+jsuy7KrwRweqGHWg36lTv52Nt1BTKiEppiJyrYfvfTeDemgI9BUvrpKm/Rs5W4r/yY6uKmtjtaxles5/mqdhQKrzGP9S//3qlMjLZ0baWkUpeHeBH2J93rrtBLXtdBxXQsdsuycNO9MmozZJuOQIeiynnmbA25qp2PPKQeHzjk4luz8mbPVikkPwzrqeeB6Z10OWSY9Vy7Sux4ZpGHybSa+2Whl1kYrvx+2M3GwkbhIxax4LAhCNSlX47xTp05FPlRlWebUqVNFppUvnPS9f//+2O3KWL9R8I6EhARvlyCUorh8ZFkmd8sGUr/6DGvSWYIHDSfijvvRhoa55ZiyLJP69Wdk/PQ9AH4duhA98RV04TW3J68y1HzuGBo2xnKxcS5JEkHX30j69zPIXrPC7Y1zW0ryxf+wVarnvDQhw0aj8Q8gefKbBPXui2Q0oPELUF023zR9kv2h19DMakUqHM9eg4e1F5fP+cyLjfPLes7jLq6pnZhaMxvnDllmzR4bCRd7wwsfe+1nMz3jdfRrfem+75K8ubCAtfvsvHWzsUhPMsDWwzZ+3eUcdSABdcM01AouvQFZnnNn2xE76/fbiYvQVKpxvvuUnSV/2Xisv6HYelJzHASZJAw6Ca1G4o0xxlLfgytJkkRkkERkUPHP67US4/s6h7hn5snsPG5n2xEb24/Zyc4H42Vv44UsmVs/z6dhLYlB7fUMusaZlV7rvA+9ezMt7y0288D0fG7uqmdcNz3+Rs/cgqG2zzVfI/LxTeVqnM+cOdPTdQg1SGJiIrVri2HKSnVlPgWHD5Ay9X8U/PsX/p27EfPaexgbuHciRkmSkHTOiYnCxt1J+F0PeGQWb7VT87ljbNSEnHWrkO12JK2WoBucjfOCPf/gyM9H4+fntmPZLiS7/ttQycZ52pxvyN+1g9CRYwno1sv1uKTVEXjdDSRPfhNT22sI7uecrDBx2zZVZZOtDyXdFI2dsyA5L5jL1Nx7rIs7d85lXBzWflnPef2LPZGJKTXzSsU/Jx0kZ8n0a3Pp692vf9rYfMjOjmN2OjTQlHk/dOGkZAv/tBVpnFvtMl+stgAwpqsOsxW+22KhfxtdqfeMl+dzzXlvvJ0z6RW/aGKxyXy4zEyLuhqGdLj6a+2eU3ZeXWCme1Ota5b5ijTMKyrEX+KGVjpuaKXD7pA5nSbjf1ln/vlMGY0Exy/IfLbKwvztViYOMdI2zvlvYsu6Wr6814/vtliZt93K0r+t3NXbwIB2OrfXreZ/c3yByMc3latxfueddwJgt9s5evQoUVFRhIaGerIuQcWOHTtG166emwRKqJrCfGwpyaTOmEr26uUY4hpQ+62PCejsudmcw+98AL8OnfFv50sDaytGzeeOoUFjZIsZ69nTGGLrY4itT+3/vo9f+45ubZg78nJx5OYAoAkNQxdWudEX1pPHnbPJd+lGwBXPafz80YZHYr1sOTW1ZeNqiEsS2cZwALcufag0xeXTvr6W8AAHdcIuNWgKZyFPy5WLrIFeU6zaY6NumOS6v/tUqoNpa50N6geuN5RrorKhHfT8vN3G9qN2Tqc5XJPKLdxp40y6TFiAxB09DZhtsHqPjW83W3i0f8mTAZfn3CnMqDLLqf241cqZdJmp95iuGqK+eJeVz1ZasDlg3xk7uWaZAA/1QhdHq5GoH1n0eG3jtPw8wZ+1e23M2WolKVPmP98X8PiNBoZ0cF7ENuqds80PvkbHzA1WPl5h4YffrYzsrOemtjq3/b1V2+earxH5+KYK3cwiyzItW7Zk69atnqpHqAF0FZw5WaheOq2WzMU/c/KeceTt2Eqtx54h9stv3d4wz9+3m3OvTsRhMQMgaTSiYV4GNZ87hcPLC4e2AwR063XVhGtV5eo112oxNmpa6f1oQkIB5+SHhfL37ebCZx+Qs3k9+rr1sJ45hSMvl4J9e9Bp1Hbvp+T6X4fG2SMnBZYwJrcGKO7ceXKAkY9u9yP6sp7zAKNzeDLAaTetq60UVrvM5oM2rr84IZvdIfPuYjNmG3RooGFox/J9vtQN17juV5/7h9X1eGiARKg/3HOdc5h1WIDErd31/LrLVmRytCuV53Ot8ALAmfSKjWhITHHww+9Wxl6rp1HUpZwLe9M/XuFsmPeO1/LpnX7V2jAvTbCfxPBOemY96Ee/1jocMny8wsJP26xFtosO0fDcUCNf3edH+/pavl5nYcwnefx3QQEb9tvIKajaCBA1/5vjC0Q+vqlCqet0OmJiYnA4atY/aIJ7jRkzxtslCCWwnE6k2x/ruLD7L+d95fc9gtYDX9hz/9hM0hsvIpvNpH8/k4i7H3L7MWoiNZ872tAwtGHhmI8fLbaHVrbbkLRV/6LhapxLUpXuN9cGhwDguLxx/vefZC6ajz0nG33dWMxHDnH85oHIZjPDZhW/SolSub6yF5kvxiulVIuKnDt1wyRSsmVOp8u0qEErFf190k6uGXrFO8+zbzdb2X/WQYARnhlsLHZyt5Lc1kPPtqN2VvxjY3hHHY2jtfRrraN7Uy2my5ZOH9VFz+K/bHy1zsJ/Rxc/M1x5sql7cZb45CwZs1Uu1zJ3Dlnmw+VmokIkbu95qajUHAevLTCz97QDCbg3wXnfdmkT0nmLn0Fi4hADEUESP261kp5T/EnaKErDxCFG7u+jZ/VeO6t32/jvL2a0GmgSraF5bQ1NYzTUj9QQFSwRHiiVONHd5dT8b44vEPn4pgp/Uxo3bhyzZ89m0KBBnqhHqAF+/vlnRo0a5e0yhMvIskzW8kWkTPmIAqOJhu9/jn97z/RiZ69Zwfn3XgeHHf8u3Qkbd6dHjlMTqf3cMTRsguX4kSKP5WxaR9p30wnofh0Rd95f5WNcPhlcZe83B1yTHV7ec15Yu7FhE5BlcjeuRR/bAMuRg2yY8z39nn6u0serbnJhQ0QCkzWXXJ2JgoP7oVs77xbmIVeeOxab877e4u7R7dRIS3igRGSg8hprVbHpgJ06YRKNaknsPmXn+y3OXtgJNxmJKmPStiu1qqelV3Mtmw7aef0XM9Mf8EOrka7qeTboJO5LMPDmIjP/nLTTrv7Vc4mU53MtxB8CjJBrhnMZMg1qlZ3N0r9s7D7l4INbTUUmv3v2hwJOpMgEGOHF4Ua6NlZ276MkSdyXoKdtnIYujUqfiyU8UMPNXTXc3FXP+UwH24/a2XfGwb+JzgnxCldg00gQ7OccHm/UOf/foHOOpNFIzmt2GgkuXEgmJjra9efC/9dIEOwvEebvHCFRJ0wiNkJDdEj5Gv2Ce6j9O4FQORX+xGrfvj1z587l+uuvZ+TIkdSuXfuqq5EjR450W4GC+lgsFm+XIFzGnp1F8kdvk7tpHcGDhrMzvA6tPNUwX7uS8+/9FxwOgvoPIurJ55HEsKxyU/u5Y2zYmJzfi67LKlutWI4dwZGXR/jt9yJVcXi4qUVrQkaMJfOXuc5GdCUV9pxf3jgvXArO0KgJcl4ejrxc9LXrYDlyEF1aSpXqrm76evUhD+xaI01y9jHk3GaaZeqAmtk4v/LcWbXbxofLLVzfUsuLw4v26N7a3T1LQyqJ3SHz+2E7/Vo7h7TvO2PHIUO/Njqub1W5z+DHbzRyIbuAw0kOMvNk10RxV+rTUsvPOzR8scbClLtNV/XQl+dzTZIk6oZpOJTk4Hymgwa1Sv+cSM5y3ks/qL2OaxpcatBqJIkHbjDw1VoLr44yuYbLK50kSUUuIljtMntPO2hfzMWOQtEhGoZ00DCkg/PP+RaZcxkyF7KckwJm5cuYrWC2Of/fYneOnpFl50UMWYbMFLNrDXdZBgfO/zfb4Oh5B+m5zmXfrBcXYTLooHG0htb1NLSup6VdnLbGzdugJGr/TiBUToU/se+44w4Azpw5w/r16696XpIksZSaj6tfv763SxAuKji4n6TXnsNRkE/MpLcI7HU9sb//7pFj5Wxez/l3XwOHg+ABQ6k14bkqN8R8jdrPHUOjJth+noMjLxeNv3OatYDuvdH4B2BLOkvB7r/xa9ehaseo3xBDbH3QajHENaj0fq7sOXdYzFhPOyeAMzZsgi0tFcD1e0Sgrtu56tQLZe8BC3q9lnBbGt2SVuIXXbX3XsmuPHdSLw4PNhl8o+Gw74yzIdWzubMxN/ZaA81itDSvXfnP4PBAiY/+z8TfJ+2lDjOXJImHbzDwxLcFrN5jo38bfZHny/u59tpoI0EmCb8yMpNlmY+WW/AzSDxwvQGrXeZ0qkzDi/ecd22so1NDrWp7eC02mUnzzfx53M4rI430bF6+r+p+BolGUVKRe+/L8vvvKXTv3qzUbRyyzIUsmVOpDk6myOw/a2fDfjvzttnQSNAuTkOPZjp6xWuJDBL/5ruT2r8TCJVT4cb5unXrPFGHUIM0btzY2yUIQNbKpVz4+F0MjZtS9+U30UfFAJ7Jx5Gfz4X/vQsOO0H9B4mGeSWp/dwxNHTWbzlxHFPL1gBoTCYCE/qStWwRWb8tqXLjHMB8/AiG2AZIhsr3gGqDQ+Cyv6PWxBPgsKMJCkYbEYlkdM4+XTjyI8hcUKWaq9sTPfL4+68MYgKCKOx7kWvwTedXnjvpuc7fNTyg+Aaa3eFscESHSIq8F7miNh20EepPkXW4L+9RriyDTqJLOYaFt47VktBCy5drLHRrUnQ28fJ+rpV36P2avXa2H7Xz+hgjuWaZiT+aOZPmYMrdftS5eO+6WhvmADothAVIOGR4Y6GZN2+W6NjQM0uPlicbjSQRHSIRHaKhUyMA58WX85kOth2xs+WQnalrLExZDV0aaxnUXkfXJuq9OKIkav9OIFROhb89X3fddWX+CL5t7dq13i7Bp8l2Gxc+n0zy+68TdMON1Jv8hathDp7JR+PnR+23PiL4piFEPfW8aJhXktrPHUP9hqDRYj56qMjjQf2dc5TkbFqLIy+3SsfI2biWgr3/om/QsEr70cfWp/GyTdS/ONFb4ZB2Y6MmSJKENigYTUAgXJwANefEsSodrzrJskzerh00S/8HyWEjSxfMvxHXkqSJ9HZpHnPluVPYc17cUGybXWbIB3ncNiXf1YhXM1mW2bDfRr4FXvzJTHa+d36nh/sasNhg+vqiQ3Hd+bmWmuPg81Vm+rTUopHgwen5HDjrPEfPZ6o/S3A2hp8eZKBXcy1WO0yaX8DuU54ZkVqVbKJDNAztqOfdW0z8PMGfx280kJYj8/J8M/83JZ+ft1vJt9SMTLxF7d8JhMoR36AFoQZx5OVy7uWnyVy8gFqPP0Otp16oUu9iRZiaxhP1nxfdMiO3oE4agxFDXIOrGuemlm3Q14tDLiggZ2PlR1/Zc7JJev0FLMecPedVIWk0SNpLvVHWs6cB56R2hfS16+AoyAfAmJONrJaVSmSZCx+/w62HP0FnLeCkqQGft32TbYb23q6s2qRdbHRHFNM412mdk1wBnE5Tf+Nhw347KdnO+4TBeY+xN0QGabjnOgNL/rKx70zlGpNfr7MwfmZ+sUuzOWTn0nBaCcL8JeeFiAKIr6Phy3v93DJSQCm0GokXhhnp1FBLgRWe+cF5y4BSBZokhnTQ88U9fky9x0S7+lq+XGvhls/zmL3JQq5Z/eeZIFSXSn2LPnz4MF9++SX79+8nPz+/yHOSJLFmzRq3FCeoU8+ePb1dgk+ypaZw7qWnsJw9TZ03P8S/Y9dit3NXPrLDQcpnkwnqNwBTi9Zu2aevqwnnjrFpc8xHijbOJUkiqP8g0mZ8QdZviwm+aXCl9m09nej6b1N8yyrVeaWIux4kdPjNyJfNmaKrXRdbRjohQ0eTY/IHmw2q6WJXVc2Kf5bjwfE0NvsBziH5Nfnr8ZXnTtrFnvOwEoa11wv/f/bOO7yKauvD78ycmk5II4XQe69SBEFABAugiNivvftdvXrVa732a+/Xil4LKihYQUVFpEjvvZckJKS306Z8fxySEEkgCSc5k2S/z8NDcmbPzDr5nb3PXrPXXkvmcIFGWp5Or9aN16nbnqHx9LceALq0knn6YkdQE3Sd19/Cz5tUnv3Ow3+vdmK3SrUa1zYf0tieobP+gEZKy8rrR1+tVFm9V6dVlMRXq/yO6uQBFm4404a1iqz8jR2bReLRC+08+bWHJTs0nvrGQ6HLYMpA68lPriH18Z3TMUHh3nMV/jbCyqzlPj5d6mPuKh+XDrNxbj9LeWZ9wclpCnMCQe2p9cr5pk2b6Nu3L99++y3z588nLy+PnTt3snDhQnbv3t2k97QJakZWVlawTWh2eA/u59Dt16Lm55H84lvVOuYQOH3yZn5Awbdfknbv7WiFBQG5ZnOnKfQde4dOePfuxtAqr/JEjD2bkMHDaHnVDXW+9rHOub1dxzpfp4yC7+dy6O83UPD9XMCfJM7SsiL025qQiHo4g9jb/kFuv8ENFoVyyhgGOY54DoemoiFTNhU2aLqT4mP7jmEY5c55VSvnAEnR/tfTGvHK+ZFCnQe+8ODTINwBz10aXMcc/Cu+95xj53CBwTu/+cPbazOuDWzvf1DyzWq10nxya5rGu7956ZQgkZFvEOGEhybbuXWcvUk65mU4rBKPXGBn+hArVgX6niB7e12oz++c+EiZW8fZ+d9NToZ0svDfX7xc/baLpTvMGwFgNprCnEBQe2rtnN9///2cddZZbN68GcMweO+99zh48CDffvstbrebxx9/vD7sFDQiduzYcfJGgoDh2buLtDtvRHY6SXnlvZM6LYHQp2TZH+R++A4AMTfcUV6WSnBqNIW+Y2/fCcPrwXtgf6XXLTFxJD7+/CklhPMezaaO1YrS8tT3T6vZR3BvWo972+Yqj1tbJaJmHcbQ1EamjYEu+b/eJSSKHP7M9CFDTg+mUfXKsfr4NBjZVaFfG7nalfOko4nDDuU2kq0Kf0HVDB6f6ykP3592mvWkWc4bijaxMjeMtjFnlcry3bXrO+f0teK0we4snU+W+Fi2U+W3LT4e/tJDxwSZ/0x3cMFAC+9fH8LIrs1jC5UsSVw7ysaMG5zlGekBPv/Ty5q9GvopLIo1xLgWFyFz90Q771zrJKmFzIOzPdz/hZv0vMbZ9xqSxvW9IwgUtR7Z1qxZwxtvvIF8NOGTfnQP3sSJE/nHP/7Bfffdx++//x5YKwUCQZW4d2wj/d7bscQlkPT0y+XloeoT74F9ZD79CBgGEedOIXLC+fV+T0HjwdbBX5bHs2s79rbVZ5o1fD4kqz880zAMvLt3oBUW4ujWE9nhqPIc777dAFhi4wOSYdt2NKlc0fxvUTMziJg4ifCRY8qPWxKSQNPwHthPSHYW3gP7Tql8W4NhAEdXySUJNNkGOsjhzeMhms0icd95VX+GykhuWbbnvHE6CEeKDI4UGdit4PHBsE7mclTP729h+W5/KPb4lqE1Pi/CKXHBQCsfL/ExY5EPAIcVQu3+FeRwp8zNY+31ZbapaRVV4Zjvz9Z551cfBj5aRUmM7WFhZFfLSevDB5M2sTJPX2xn8XaNNxb4V9GnD7EyfahVhLoLBMdQ616cl5dHdHQ0sixjtVrJy8srPzZgwADWrFkTUAMFjY/p06cH24RmgWvzBtLvvgVrUgpJz75WY8f8VPTRSorJeOSf6KUlOHr2Ifamv9f5WoLjaQp9RwkNw5qYfNy+8zJ0l4vst1/lwPWX4tmzk5LlSzl069UcvOlK0v95G5lPP1zleYZh4N66CfCvzgcCW2q78p9da1ehZh6udNzaKhGA/C9n0v2bmeR9/lFA7tsQlK2lGZLchIPZK6ht30k+unKenmec0spjsGgVJfPfq50MaqeQECmR0tJcKkuSxP3n2YlySiwrHUNhLTLIX3G6lRvOtJHYQsJuBa8KD0620TLMvI5nQxNqh3P7WQi1Q0a+wf8W+7jmHRd/e6uUGb97a7wq3dDfOZIkcXoXC+9f72TqYCufLvVx4/sutqXXTzb6xk5TmBMIak+tR7qkpCSys7MB6NChA4sWLSo/tmHDBsLCwgJnnaBR8vXXXwfbhCaPa8Na0u+9A1v7TiQ98wpKeESNz62rPoauk/n0w/gO7scSG0fCg0+Ur3wKAkNT6Tu29p3w7Npe5TFD9VH8+y/4Dh3g4A2Xk/HAnXh2bAWrFUeP3sTd/WCV56mZGWi5OQCE9B0QGDuTWyPZKlbhQvoNrHTcGpcAklReGtB3OD0g9613DMO/ZA5IkoFdLQbAtWd3MK2qV47tO17VQNVO7AwmREmM7KJwwSAraiP1CyKcEnuydAa2U0xZqz3cKfHkNAfZBR4emOWucYk3RZaYPMBC+zgZXYenptnpmWKuyIBgExMuc8d4O1/cHsJ959kZ0lHBqsCBHIOPl/jYklbhnKuaUW0+qGB95zhtEtecYePNq53YLRK3fejmrV+9eHyN70FZfdJU5gSC2lHr0W748OEsXbqUSZMmcemll/Lwww+TkZGBzWbjgw8+4LLLLqsPOwWNiNLS0mCb0KRxb9lE+gN34ejSnVaPPVdtCHB11FUfw+tFkhUkm52Eh5/B0qJlna4jqJ6m0nfsHTqR//lHGLp+XM17JTyC5JffIfOZR3FtWIPsDCFi/Lm0uPiKE0Z/KC2iibnlLrJffx5758BkapcsFuLvfZjSVcuxteuIvUPnysdtNiwxcRg+f3itejgjIPetd2QZpWUcqKArNtqWbGZM+sd0zNGBB4JtXb1wbN+Zv17l5R+9nNld4f7zqx4fFVnioSm1GzuDjWEYPPqVhwHtFCb2sZCeZ5CWZ3DjmebNNp/YQmZc/J/8ljOC//vIxVMXO4iLOPG6UHaRzqNfediRofPwBXYGtBOOeXU4rBJjelgY08NCsdtg2U6VP7ZrDOlY8ZmYtdzHjxtURne3MKqbpVIW/GB/57SLk3ntKgdf/Onjwz98LN2hcs85dronm/cz3ZAEWx9BcKj1iPevf/2L9HT/6sE///lPDh8+zCeffIIkSVx00UU899xzATdS0LhITk4OtglNFvfObaTf/3/Y23ek1b+frbVjDnXXR3Y4SHj4abx7d2Nvf+qZsgXH01T6jr1DJ/TSEtTD6VgTj39PlphYkp59Dd3jRlIsSJbKX0WGqlLwzZfYWrchZIC/8oBsdyDb7SDL2FLbBMzWsNNHE3b66GqPWxIS0UpKAFCzsyrtlTcrkqIQExfK7kMqilUhUi/gjPRvcET1DLZp9caxfSe/1L/6ZpYEaYHiu7V+x2vFbo2B7RRW7tGwyJi+vne/9mFM7urk3s/d3PS+i9vPsjOiy/Gr/YZh8Md2jVd/9CLL8OLlDrolmfu9mYkwh8TYnlbG9qw8Pi3dqXEw1+DDP/wOcId4mQHtFPqmysS1ah0kaytQZInpQ20M7WTh2e893PE/NxcMsnDNGbZmvxe9qcwJBLWj1s55+/btad/en+RHURReeeUVXnnllYAbJmi8dOsW2PrDAj+evbtJv/cOrCmtSXz8BWSns07Xqa0+rs0bcHTp5neiZFk45vVIU+k7ZSvQnl07qnTOy5DtVT9cyp/9KTnvvYE1KYXWb39SXsLMs2cn1qSUas+rD6ytEvHs3wtWG/i8+LIOY0tKabD715X7B2Vy7U6F+NAYio/uOm/KpU6P7Tt5RzOYR4WceGKvGwbZRQY+FZKizb2fObNA561f/aXJrjnDRnykzIrdXnqmyKZ/CNGtWzdatpR57UoHL87z8u85HtrHyYzsqtA2VsYA9mbpLNyqsveIwWkdFO6aYCe6mjJ4gtrx9MUOlu5Q+WWzxuq9GrsydXZl6ny2DOLCe3HmGRVtl+xQcVolEqIk4iIkLA1Ypi41Rublyx3MXuFjxu8+VuzW+Oe5drokNt8HNE1lTiCoHeb+NhI0Sn766adgm9Dk8B46QPo/b8MSG0/iky8hh9Y8++1fqY0+hfO+Ie3OG8l64SkMvXFmNW5MNJW+Y4luiRITi3v7ljqdH3nuBSgtovGlHST3sw8pXbWcrOefwLVpPfZ2HQJs7YmxtkpCy8zAFerPp6I2gn3nhqbh2b6VNoXbkAydUtnJ9qg+ZMpNdyvKsX2noLRmzvn3a1Wmv+bijQXeerUtELz7mxeXF3oky0weaMGrGqzbr5XXBTczZdpEh8k8NtXBc5c4SGwhMXOZjwdne3hotofP//SR0lLmuUscPHGRQzjmASTU7l9Rf/piB1/cHsK959o4q5eFuAgJm5pdqe0LP3i4e6aby990cfZ/Spn+Wil//8jFqz96WLil/uuTK7LEtNNs/PdqJ3arfy/6jN+9+E6SQ6Kp0lTmBILaUaOV8//85z/cdtttOGuxUrd69WoOHz7MxIkT62ycQCDwh9Km//N25PAIf7m0WiR/qyu6x0326y9QOO8bAP++4Sa86iYIPI4u3autH34y5NBQYm65k8zHHyDvo/corwlitRE2fFTAbKwJ1oRWaPl5eJNa48zPxdcI9p0bqo/sN17gb8Avp8/ikC2ZxX2fZ3zxAgKTSs/clIW1R1VT47yMxKMZ29NMXk5tV6bGr1v8WetuO8uGLElsS9fwqNDP5CHtVdG3jULfNgq6YZBfUqGVbMKkdk2NFqFloe/+SJqPPl0J+EtKarpBp1YKh/N1DhcYeFXIKjTIKjTYcFBn7xGdM7pVuA2/bVHpEC+THC0FPCFhm1h/pMWnS318vMTHn7v8q+jt4sSaoqDpUyPnfMaMGbz44otcc801XHbZZXTp0qXKdm63m++//57333+fBQsWMGPGjIAaK2gcDBkyJNgmNBm0okLS7/s7GAZJT78SkDrmJ9PHtWkdR156Bu/+vSBJRF9+DS0uu8aU2YCbGk2p7zi6dCf34/cxNA1Jqb0DETbiTErO/IPiX34EQImJRcs+0uDbKiytkgCIOm040S1b4ujWCPZtG/B+13vJCGlNB7cFo7yYWtPtw8f2nfwqVs6LXAbrD2gost+htVslkqP9xzPyDTTdQJHN+fd5b6E/IeHobgod4v19ae0+jXAHtI83v7NS3bgmS5JYIQ8ikiQxYtig8t8VWeKpaf4tQ7phkFdicDjfID1PZ+dhneRjtn4UugyemOvBAOIjJYZ1Uhja0UKv1nLA+pFFkbjidBundVB45lsPN89wceUIKxcNtpq2rwaapjQnENScGjnnGzdu5PXXX+e5557jqaeeIi4ujn79+hEXF4fD4SA3N5fdu3ezceNGVFVl4sSJrFmzhu7du9e3/QITUlBQEGwTmgS6x03GQ3ej5hwh+cW3sMTGBeS61emjFeST/farFP30PQBKVAvi73uUkH6DqmwvCDxNqe/Yu3TDcLvwHtiLvW3tQ9ElSSL+nocJGzIC967t2Nq2J+uph7G1bV8P1laP9ahz7gqPpMXUSxv03nXGMMgITeVAeCdSKS6rqkZTjn05tu/k/2XP+ao9Kk994yH/aOLj+EiJRy6w0yFexqqAT4PMAoPEFuab8O/P1lmx2/9Q4aoRtvLX1+3X6N1aaRSrzU1pXGtqVKeNLEm0DJNoGQbdkxXG/uWZZEGpQe9Umc2HdDILDL5aqfLVSpVwJwzraOG8/hY6twpMVEenVgpvXu3kg0U+3vvNx9IdGvecY6+Udb6pIvpO86RGn2yLxcIdd9zBvn37mDVrFhMnTmTfvn3MnTuXGTNmsGTJEqKionjwwQfZuXMn33zzjXDMmzFbttRtn6mgAkNTyXziQTw7t5H4+AvYUtsG7NrV6SPZbJSuWApAxITzaf3eZ8Ixb2CaUt9xdOoKsox7a91C28G/nSJs5JnEXHMzvoMHkCOjsMQlBNDKk6O0iEay28nasqlB73uqHLtaXmSPBsDZZ2D1JzRyyvqOYRgMam9hQFuF6DCJ7RkaD8720DFB4ZObnbx3nZNIp8Q9n7o5nG+QdNQhP5BjztD21BiZN692cOtYW3nSOrfPYEuaTp/UxhHS3pTGtaZGXbVJaSnz/KVO5t4Zwr8vtHNWLwsRTihywfwNKjsyAtufbBaJ60fbeOlyB/mlBje852LOSh96E99uJ/pO86RW2doVRWHKlClMmTKlvuwRCJo9hmGQ9dIzlCxfSqt/P4ujW496uY8v/RCFP/1A9BXXIskysjOE2NvvwdIytt7uKWg+yM4QbKlt8WzbDBPOP+XrebZvxtGle4Nvr5AkCWtCIvaiAjy7d+JLP0To8DNMvs3DqHDOJdAUG6ggR576thizI0kS955nB8CrGjw+10O7OJl/X2gvL8v0n+kObv7AxWNzPKTGyuzL1th7ROe0hs01WGM6JSh0SqhwxDcf0lF185dQEzR9HFaJYZ0sDOtkQdNtbDqo8+sWlZFdK9yLHzf4+H2bxoUDrfRtI5/S2NkjReHta5y885uX1372smSHyt3n2ImPbPqr6ILmQ61LqQkEJ2Pq1KnBNqFRkzvjvxTN/5a4ex4idPDQgF///AF9OfzkQxT/vgB0HXuHToQNPwOAsNMbNtmWoDJNre+cSlK4YzEMA/e2LURNuTgAVtUeS6tEUlWNgzdfCbpOm8++w9IyJii21AjDoCyWXZakirD2JrzKVFXfmbXcR2aBwRNTHZXqJYc7Je47z85tH7qJCfc7uPuOmGvlXNP9Zd6qcjrW7teICoHUGDM/IKqgqY1rTYlAaqPIEr1TFXr/JaLjq5UquzJ1lu/SaB8nc+kwK6d3qfuWDKdN4vaz7AzrZOG57z1c+46Lm8faGN/LYvKHprVH9J3miXjUJAg48+fPD7YJjZb8OZ+TN/NDWl5/GxFjJwT02q5N60l/4C7Sb76K4t9+Al0nZOBpWGLjA3ofQd1pan3H3qU73v170V2lp3QdX9pB9KJCHF2Cs13KmpBIwZ5d5SH1vvRDQbGjNhwb1m7z+f/+3kMHgmdQPVPWd3yagU8zKPEYfP6nj/P7W2gdc/xUp1uSwtieFjYc0LhgoIVR3cy1VrFgk8oVb7qY8fvxZd7W7dfok6o0GkekqY1rTYmG0ObByXYm9bfgsMLuLJ1/z/Fw3TsuFm5RTyksvX9bhXeudTKii4Xnvvfyr1kecorN9ZDtVBF9p3kinHNBwCkqKgq2CY2SooU/k/3mS0RdeElAE09pRYUcuvMm0v5+A6XLl2AAYSPPJOXND0l88iUcnbsG7F6CU6Op9R1Hl26g63h2bDul63iOrr7bg/RZtbZKwlqQhzUpBQBfmrmdc8lqQy4ruagoJLv2M2XXW3TbOCu4htUjZX1n8XaN8c+UcssHLjw+uOg0a7XnXDHcSqnXX1LttA7mcc5dXoP3f/eh6uCwVT5W6jHYnt549ptD0xvXmhINoU1ytMxtZ9mZeWsIVwy3EmqHfdkGj8318Nz3xz98qg1hDom7z7Hz2IV2dmToXPO2i18313899oZC9J3miXDOBQEnIaFhEzY1BUrXriLzP/8mbPQ4Wl53a0CvLYeFY7hdYLEQcfZ5HL7xLhIeeAJ7h84BvY/g1GlqfceW2g7J4cS99dSSqbm3bcaa3BqlzOFsYKwJiciaVh7K7j2497g27p3b2DvtHHafM5LcTz9oYAsrI1mtRETYkQwNWZFpYRRy1sEv6OY+tYckZqas75Rlas8qMBjd3UJsePXTnMQWMmd0VZi9wlyJpb7400d2kUFCpMQFAys/XNh4UEM3Gtd+86Y2rjUlGlKbCKfElSNsfHpLCFeebiXMAWd2r3gopul174NDO1l47zon/dsqPPG1h8fmuCkoNU+friui7zRPhHMuCDj9+vULtgmNCs+uHWQ8cg/OXv2Iv+sBJPnUumXp2lWk/+tO9NISwJ8gKe7O+2nz0VfE3Xk/vcaMC4TZgnqgqfUdSVFwdO+Fa8OaU7qOe9uWoIW0Q0WtcyXKn1DNu2f3cW1y3n4VLTcbw+Mhf9YnGD5fg9r4V57ss51YVwax4VJFdXMTOaCBpqzvlNU496hwbr+Tr4ZPGWglI9/g82U+U+w7zyrU+fxP/2fn+tG2SnvlAdbt14kJl8qzzDcGmtq41pQIhjZhDn/98pm3hNCvTcV855MlPu79zM2erLr1w8gQiQcnO3hgkp3V+zSuecfFkh2NexVd9J3mSUCd85ycHBYtWhTISwoaIT/88EOwTWg0+DLSSf/X37EltabVQ08iWasPwTwZ7q2bSLvnVtLvuZXSFUvJn/N5+TF7h05YYvx10oU+5qUpahPSpz+ujesx1LpNkgyvF8/uHdiD6JxbE1oBINn8WcA9e3Yd1yb+/scIP3M8AHpxEaWrlzecgX/B0FS8B/eTVLwbMHBJdvaGd+aIpWXQbKpvyvpOmXMe4YSuiSef4nRJlIlwwrsLfcxbH9wHKgBvLvDiUaFnisyILsevjq/dr9G3Ee03h6Y5rjUVgqlNiF0q/xy7fQZfrvSxco/GDe+5eGmehyJX3R4mjurmX0Xv3ErmodkeHpztJrMg+A/e6oLoO82TgDrnCxcuZNQoke1ZIKgJWn4e6ffdgexw0uqJF5BDQut0He/+vWQ8fA+Hbr8W19pVYLEQef6FRJx96uWrBIJTxdmrH4bbVed9557dO0BV/fvXg4TsDMHncIKmAaDlZqPl51VqY2kRTfy9jxA56SIAihcuaHA7y9BLS8l97w1u3PxvJMMg3ZLA0wPe4IeI8UGzqaHILfZP6Hsk16xkkyRJDGznd4K3pgV3Av/7VpVF2zRkCW4dZzvO/iKXwa7DOn1SRdCjoGnhsEq8cZWTEV0UdAO+Xaty1Vul/LTRV6cqEy3DZB6fauehyXa2p+tc/baLmcu8+LSmGz0kaDqYJwOKoMkwcODAYJtgenRXKekP3IVeUkzyy+9gaRFd62sYuk7OO6/5V8g1DWSZ8DFnE335NVgTEqs9T+hjXpqiNvZOXZCcIZSuX42jW49an+/eshHJasPermM9WFdzrK2SUHOOEHPz37HGt0JyOKtsFzp0BAVzv8C1cV3DGngshsF7Xe8j1xFHe1eFg9eUp6VlfedQrt/B7pNa8+nN2b0t/LJZY8dhHd0w6lzi6VTxqAYOK1w4yEqH+ONXzdcf0DBoXPvNoWmOa00FM2mTFC3z8BQH6/ZrvDzfw4Ecg2e+9TJvncpdE+0kR9fuoZQkSYzsamFgO4UP//Dy/kIfP21QuWO8vdEkVDSTPoKGQzjngoDjdruDbYKpMVSVw4/9C++BfSQ9/wbWxOQ6XUeSZdScbNA0Qk4bTsy1t2BLbXvS84Q+5qUpaiNZLDh79Ma1fg1Mv7LW57s2rMXRvecpbfkIBFqLaHwZ6cTf/WCl1/O/nEnpmpVETZlGSP/B2Dv6Ey2qRzLRiotQwsKDYS77IrqQFZJMa0Mrf60pO+dlfSfn6Mp5h/iaT+R7tVaQJPBpcCjHoHWQ6oeP62mld2uF6LCq779uv0arKKnK2udmpimOa00FM2rTJ1Xh7WudzF7h46M/fGxNP7WIlhC7xE1j7IzrZeXl+R7u+sTN6Z0VrhtlI6mWDn9DY0Z9BPWPuT+VgkbJxo0bg22CaTEMg6wXnqR07UpaPfwUjo5danW+99AB1Lyc8t9jrr+VVk+8QOJjz9XIMQehj5lpqto4e/fDvXl9rZOkGbqOa+M6nL2CnxQnUzNQD6dVes3QdfLnzqJ0xVLUrEwAlLBwkl99j3ZzFwTNMYeKOueyLFHq9Efm2DsFb2tAfbNx40Y03cCnQkKkRGxEzR1sRZZIiPS3X7NPO0nr+iU+UsaqVO+c924kK37H0lTHtaaAWbWxKhLTh9iYcYOTe8+tvGp+MKduznr7OJmXLndw33l2th0NdX9zgYdit3kfW5pVH0H9IpxzgaAByXnvDYp+/oH4ux8ipP/gGp9naCp5n/2Pg9dfxpFXny9/3RITR+igofVhqkAQMJx9+mO43bh3bK3Ved69u9GLCnH26ltPltUcT3gkavYRDK8X18Z1ZL38DIXzvkE9nI4cFk7YqIoqCI4u3eucQyIgGAaGVOacy2gWfyI7JTIqeDY1AJsP6Xg1+NckO4ktaje9GdTe7/T+uqVhszt7VYN7P3Ozau+JHwrklRjsPWLQtxE65wJBXYmPlDmjW0WQ75Y0javfdvH0N546lUqTJYkxPSx8cKOTy4db+W6tyuVvljJ3lQ9V7EcXmIQahbV/9dVXNbrYn3/+eUrGCJoGkydPDrYJpiT/q8/J//wjYm68g/DRNS9n5tm9k6znH8ezczsAemkJuseNbHfUyQ6hj3lpqtrYO3RCDgnFtW4Vzu69anyea90q/37zrsHL1F7GwLMnkr14Ab6sw+S8+zruLRUrGhHjz0V21K0/1gvHJFBSFAn56ELsKZQRNj2TJ09mxmKV6FCJLjXI0v5XBrdX+Hq1yq7DDZsUbuZSf4bqvUd0PrrJeVzptDLW7/c7740xGVxTHdeaAo1Nm82HdAwDft6ksnKPyi1j7YzqVvvqBQ6rxGXDbZzdx8KM33289pOXuat8XH2GjdM7m6caQmPTRxAYauScX3jhhUiSVKOMibX9QP/66698/PHHLF26lIMHDxIVFcWAAQN46KGH6N+/f62uJTAHCxcuZPz4pp8VuDYULfyZ7P++RNTUS4m6YHqNzjF0nfzZn5Iz47+gqsjhEX7HfuyEU/riEPqYl6aqjaRYcPYdQOmKZURfenWNzytZ+SeOXn2Rj5YwCyar9u2nDeDLSCNyyrRy51xpGUuLyyq/J19WJvmzP8VwlRJ3178a3lgqh7XbfCWADV9WJhAVFHvqm4ULF7J0z+kMbq/UKaFb92SFM7oq/L5Vo9BlEOGs/hpHinR+XK9y2XDbqZhMfonBF8v9Wz1uHnN8TfNjWbdfIyVaIia88TnnTXVcawo0Nm2mDrbSPVnm+e897Ms2eOJrDz9tVLjmDCsdE2ofVdIyTOYfE+1MHmDhrV+9PPqVh44JMn8baWVQu+A76Y1NH0FgqJFz/ttvv9WbAW+++SY5OTnccccddOvWjSNHjvD8889z2mmn8eOPPzJ69Oh6u7egfsjLyzt5o2ZE6dpVZP7n34SPPouW195So3PUnGwyn3rIn0QLfwbo2Dv+iSX61OsUC33MS1PWJvS008l64QnUvNwaVSfQ3W7cG9bS8tqbG8C6k3PEp9FGUVAPpxN57gXIdgcF382hxcVXoISGVWpruEopmPM5clh4UJxzye5AOhpZI8sSSd40eu//mra2fCA4DwvqmwNZbtLzIT1fY3+Oi1evrDqbfnWEOSRuPNPGwq0uVu3RGN296ulRWq7OnZ+4CXdwys75rBU+3D7o3KrqmubHUlbfvDHSlMe1xk5j1KZbksJ/r3Hy2TIfnyzxR56s3KNxwSALN4+p24Pc9vEK/5nuZP1+jfd/93L/5x56JMtcPdIW1DwPjVEfwalTI+d85MiR9WbA66+/TlxcXKXXxo8fT4cOHXjyySeFc94IiYmJCbYJpsG9fSsZj9yDs1c/4u76F5Jcs1UPyW7Hl5GO5HAQc9PfiTj7vIA9wRX6mJemrE3IYH9uhNIVS4k465yTtnetX43h8xIycEh9m1YjYuLisMa3wpeRDkDoacMJPW14lW0tcfEA6MVF6CUlyKENu/9cdjpxOK3gNlAUiRipiHP3fYQlMalB7WhIiiwVCTEddUzsHxsh0y5OZsXuqp1z3TB49nsP2UUGCZEyXtXAZpFQNYMSD0SG1HyMLig1mLvKv2p++XDrCcf3I0U6h3INrh7ZOJ3zpjyuNXYaqzZWReLy4TZGd7Pw4R9eft2s0S721KNKeqcqvHS5gxV7NN5f6OPOT9z0b+t30rskNnz/a6z6CE6NGn+SXS4XM2fO5Omnn+a9997jyJEjATHgr445QFhYGN26dePgwYMBuYegYRkyxByT6WDj2buL9PvuwJbajlYPPXnSUlC6q7R864gSFk7CQ0+S8ub/iJxwfkBDq4Q+5qUpa2NpEY2jaw+K/6hZJFbJkt+xtErCmty6ni2rGUOGDMGSkIgvI+2kbWVnCHJ4BAC+rMP1bVqVvNJ5KQ6tlPhIuXzPOTXYmtZYKbW3p+XREmTVlSI7GV7VIDZcYuFWFZ92/N7znzeqbDyo47DC/efbsVkkDubo3P4/N09946nR1r8yZi33r5p3SpA5rcOJJ/3r9vtt6d26cTrnTXlca+w0dm2SomXuP9/BO9c6Gduz4oHaD+t8PDHXzf7s2ueQkCSJwe0tvHm1g4cm2zlSaHDLB24enOVm5+GGrebQ2PUR1I0aOefp6en07NmTyy67jPvvv5/rrruOTp061VsCuIKCAtasWUP37sFPAiSoPd9++22wTQg63kMHSP/n7VjiEkh88sWTZm52bVzHgesuoXDe1+WvOTp3w1YPjonQx7w0dW3CRo2jdNWfaIUFJ2xnqCrFS34nbOSZQd/zV8a3336LtVUS6uH0GrW3xicAoAbBOTdUFTU7k7jSQygS+CQraaFtyFVOvp2gMWIYBit2uSuc89C6raApMmw4qOHT4KcNlSfhqmbw0WL/Svdlw62Vao3vydJZuUdjyY6aTdwLXQZzV9ds1Rz8+83bxkpEhZqjL9SWpj6uNWaaijZt42SUo08hNd3gkyU+ft2icc3bLh6f6yYtt/ZOuixJjOxq4d3rnPzzXBv7snVufN/Nw7Pd7M5qmMSRTUUfQe2o0TfYAw88QFpaGg888ADff/89L730EjabjZtuuqlejLrlllsoKSnhX/868d64wsLCSv88Hk+92CMQ1Abf4XTS77kVJSKSpKdfPmGtY0PTyP3oXdL+cTNq5mEK5s7C0IJbZ1cgqC/CRo4GA4oX/XrCdq51q9ELCwgfeWYDWVYzrAmt8KWn1WiF1BJ31DnPzKhvs45DKywg75MPuG/1rSgyHCSWfw96j9lxFzW4LQ3BoVyDUs2J4+gW8LqunCuyxJCO/tXp79ZWLqn200aVjHyDqBCY1L8iCiqlpczUwf7f31zgxeM7+WcjzAH3nGNnTA+l/H4nYv1+jT6NdL+5QNDQKLLEIxfYGdZJwQB+26Lxt7ddvPaTh/yS2kcPKbLEuJ5WPrjByd3n2NidpXP9uy4e/crN3gZy0gXBxePxHOdz1ic12nP+888/c//99/Pggw8CcPbZZ9O+fXvOO+88MjMziY+PD5hBDz74IJ988gmvvvrqSbO1p6SkVPp9ypQp3HzzzQwaNIjvvvsOgH79+qHrOuvWrQPg/PPPZ/HixeTk5BAdHc2IESOYO3cuAL169cJqtbJ69WoAJk6cyKpVq8jMzCQiIoJx48Yxe/ZsALp3705YWBjLly8H4KyzzmLTpk2kpaURGhrKOeecw+effw5A586diYmJYcmSJQCMGTOGHTt2cODAAex2O1OmTOHzzz9H13Xat29PUlISixYtAuCMM87gwIED7NmzB4vFwtSpU/nyyy/xer2kpqbSvn17fv3VP9EdPnw4WVlZ7NixA4Dp06fz9ddfU1paSnJyMt26deOnn34C/KEyBQUFbNmyBYCpU6cyf/58ioqKSEhIoF+/fvzwww8ADBw4ELfbzcaN/uzEkydPZuHCheTl5RETE8OQIUPKn+717duX2NhYZs6cCcC5557LsmXLyM7OpkWLFpxxxhnMmTMHgJ49e+JwOFi5ciUAEyZMYM2aNRw+fJjw8HDGjx/PrFmzAOjWrRuRkZEsW7YMgHHjxrFlyxYOHTpESEgI559/fvk9O3XqRFxcHIsXLwZg9OjR7N69m/3792Oz2bjggguYNWsWqqrSrl07WrduzcKFCwEYMWIEaWlp7N69G1mWmTZtGl999RUej4fWrVvTqVMnFixYAMCwYcPIzs5m+3Z/ibNp06Yx/7OZtJ71IRarlZj7HuOLefMBGDx4MMXFxWzevBnwV0D49avZxH43m4jD/jDZ7A5d2X/aSNy7d+Pz+diwYQMAkyZNYtGiReTm5tKyZUuGDx/O11/7V9j79OmDLMusWeNPHHfOOeewYsUKsrKyiIyM5MwzzywvhdijRw9CQkIoLi5m5syZnH322axfv5709HTCwsKYMGECX3zxBQBdunQhOjqapUuXAjB27Fi2bdvGwYMHcTqdTJo0ic8++wzDMOjYsSMJCQn88ccfAIwaNYp9+/axd+9erFYrF154IbNnz8bn89G2bVvatGlTnmTy9NNP5/Dhw+zcuRNJkrj44ouZO3cuLpeLlJQUunTpws8//wzA0KFDyc3NZdu2bQBcdNFF/PDDDxQXF5OYmEjv3r2ZN28eAIMGDaK0tJRNmzaVjw2//PILBQUFxMXFmXaMKNOmKY8R/bt0J+urz/mh0AWSVOUYsfHt1wmJiGKny4tj1y5TjBHFxcUsP5JBh9ISVv2+kF0Zh084RrTOLyQeOLRxAz+U+MrHiO+++46SkhKSkpLo0aMHP/74Y7VjxE8//URhYSHx8fEMGDCA77//3v837N//hGPEkG5dea/rfRRbI2h7IAtNU0EGVdUoKio66RixYsUKgEYzRrzz5Q4keuJ2+wAr2zYsY+aetDqNEfYcKzCUXZka//vkC6yyRu8+/fhgYQJgobNjE4bak58WVowRU4acztfLXRwucPLqt2mc16O0RmPExO7d2bv3xGPEux9/Q0b+WCK0/Rw44GiU84ji4mJ27dpVq3kEwNq1a4HmN49oiDGibB5RXFzM1q1baz2PMPsYsfnPb+nqc9GzXyf+PNKRdQcV5qxSmbfOy+RumYQW+T8vtR0j9EO/cHZUIYdbdGNlWjuufVelXWg6lw5ViA/zBnwe0aJFC/bs2SN8jSCPES+99FKNy4oHAsmowRKA1WplwYIFlRLDlZSUEB4ezrp16+jVq+Z1a0/Eo48+yiOPPMITTzzB/fffX227wsJCIiMjOXjwIBEREeWv2+127Pbgl9xp7mzbto0uXboE24wGR83LIe2umzHcbpJe/C/W+FbVti1ZvoTMZx9DL8hHcjiJu+Mewsec3SB2Nld9GgPNQZuS5UvJeOBOkl5+B2e3nscdV3Nz2Hfp+cRcdytRUy4OgoVVs23bNtrIcOiWq0h+bQaOzl1P2D5v9qfkvPUK4WMnEH/PQw1kpR81+whTX3VRaG/JZcMsbPxzN+u1VAYVLOWpZ8Y2qC0NwWNz3OzPLEWTHBzIMXjuEgd929RtpVk3DKa+XEp+KfxtpJXLhtkodhu89auXlbs1PrjRicN6/Mr8b1tUHp/rwWaBD25wVgp7PxbDMGq1VWP+eh/Pfe9lzt9DCD9BeTcz0xzGtcZKc9Fm7T6Nt3/1suOwzitXOOiefOqRKD7N4McNKp8s8XGk0GB0d4XLh9tIaRm4cofNRR+z4/F4KkVnFxYWkpKSQkFBQSU/NFDU6BOkaRpOZ+WyJA6Hv0yLqqpVnVJryhzzRx555ISO+bFERERU+iccc3NQ9iSrOaHmZJN2183oJSUk/ufVEzrmvow0Mh66B70gH3uHTqS8+WGDOebQPPVpLDQHbUIGnoY1MZn8Lz6u8njBN18iKQrhYyc0sGUnZu3atViPZjv3ZRw6afvIs8+n7ZyfG9wx92NgSP6vd1kCjzMKAGvrNkGwpX4xDIN1+zUitf30a6MwsJ1CfGTdnVhZkrhwkD9M/dMlPg7m6IQ5JO6aYOfDahxzgDO6KvRuLeNV4fWfvVVufShyGVz7jovPlnnxqjULr127X6NjgtxoHXNoHuNaY6W5aNO3jcLrf3PwwqWVHfO5q3ws3anWKpljGVZF4py+Vj680cntZ9lYf0Dn6rddPP2Np0573Kuiuehjdux2+3E+Z31So7B2gO3bt2OxVDTXju6LLQsxPZZ+/frVyojHHnuMRx55hAceeICHH364VucKBMFGzc4i7e5b0d0ukp5/46RJ3Kytkmhx6VXoxcXEXHsLku3UauUKBI0JSZaJvvwaMp95FNem9Th79C4/pubmkP/lTCLPuxAlvH6//OqCEhaOHB6BL70GGdsbuHxaJY6ZZyoy6LajNc/Do4JjTz2SnmeQXwrx8TncdlZgHtBfdJqVjxb78KiQnq+Xr4TZq3HMwZ/h+dZxdm5830VBqYHbB86/DO0f/uFlX7bBTxvV8n3qJ8L/4EFndLcaT9UEAkE1yJJUqWZ5VqHOW7968arQI1nmulE2eqTUfkXdZpE4r7+V8b0tfL9WZeYyH79sVhnb08Jlw6wktgjcSrqgeVCjsHZZlqsMw/preFbZ71otElo9//zz/OMf/2D8+PFVOuannXbaca+VhbXXVziB4NQoLi4mLCws2GY0CL6sw6TffSuGqpL07GtYE5OrbFf8x2/Y23csP17b0MZA0pz0aWw0F20MXefQrVeju10kv/oeSmgYhq5z+N/34dqwltQPZ5vOOS/T5uAtf8PWrgPxd504YWkwUY9kccHrPoptUVxzhpUlG4vZlmNnWFIJ/77y+PKljZkFm1Se+sbDx9cbtIoJXN954QcPP21UGdRe4d8XOmp83saDGt2SKjJHl7F0h8qDs/1hkf+Z7qB/25M7AQdzdK56y8WTF9kZ3KHxOujNZVxrjDRnbYrdBp8t8/HlSh/eo0HAQzoqXDPSRtu4ujvUHp/Bd0ed9EKXwbijTnpCVO2v2Zz1MTP17YfWaLSfMWNGwG9cRtnm/vnz5zN//vzjjtcl1EQQXJYtW8bYsU1vX+Nf8R1OJ+3uWwCJpOffwJqQeFwbQ1XJee8N8md/iq1dR5JfeQfZ7ghqeajmok9jpLloI8ky8ff/m0O3Xk36vbcTPf0qihYuoGTpIlo98ozpHHOo0MaamIRag1rnhmFw5NVn0bKPEPePB1AiIhvAyop7l4W1KxJYVTdgR8vPB5qWc74tXSMpWmL96mW0PPNMbJbAjK1ndLXw/TqVS4edfIX7WHoes/Km6f7Jf7EH5qz0JwU8v7+lRo45+PfJKnLlazZGmsu41hhpztqEOSSuHWXj/AEWPvrDx7z1Kst2avy508WYHhauHWUlJrz2DrXdKnHBICsT+1r4Zo3K58u8/LRRZXwvC5cOs1abj6IqmrM+zZkaOedXXnllvRlQlt1S0HTIzs4Otgn1ji/9EGl334pksZD47OtY446vWKBmH+HwEw/g3rQegJABg5EswV/9aA76NFaakza25NYkPvkSmc/+m4yH70GOiCT+nocIHToi2KZVSZk21lZJuDdvPGl7SZIo+eM3tPw81KzMBnXO5ZAQDMXt/1mGRN9hWh2YT4qUDdzTYHY0BFvTdbq0kllz0MKz/ymlXxuZZy9xnvzEk9AjRcZugfX7dTq3qptz/L8/fHy8xFf+++mdFW4eU/NtTGv2aXRNlAmxN9795tC8xrXGhtAGYsNl7pxgZ+pgK+//7mXRNo3ft6lcM6p2D+b+isMqcdFgK+f2tfD1ah9f/Onjxw0qE/pYuGSoldiIkzvpQp/mSfA9BUGTo0WLFsE2oV7x7NpB+v3/hxwaRtKzr2GJOX4lyrV+DYefeAAtLxc5JJS4ux8kbPgZDW9sFTR1fRozzU0bR7cetH73U7TcXOTwCGRHzcOHG5oybayJyajZWRhe70nzRSgtY/3OeW42djo1hJn++4aFI1lU0P17zuOsJQzf/TZKyxiaknPuVQ12Z+qM6W5jU35LACIClDjNZpHo1Vph1V6Vi06r2yS9c6LMuJ4WNN1gYDuFMT0sNY6a0nR/orvJA07NQTADzW1ca0wIbSpIaSnz8BQH2zM09mTpxB6zar5wi8rgDgpOW+3HF6dN4uIhNs7vb2XuKh+fL/ev0k/sY2H60BOvzgt9mifCORcEnDPOOCPYJtQbrvVryHjobqzJrUl84gWUqMoDp2EY5M/6hJz33gRdw9a2PQkPPXXSJHENSVPWp7HTHLWRFAuWWPOHWpdpY22VBIaB73A6tpNkP7dEt8S7G7Schl/9eDnhe65Nn0x8pExx2f7nJrZNbE+Wjk+Drkky+4+0hzSjViGjJ2NgO4V3fvPi9hnVZmk/EUM7WhjasW7TrN2ZOkVu6FfDEHgz0xzHtcaC0OZ4OrdSKkXLbDyo8dhcDzHhEteNsnFmd6VOWxOdNonpQ22cd9RJ/2K5j+/XqZzbz8L0IVaiw44fu4Q+zRORQlAQcObMmRNsE+qF4iW/k37f/2Hv3JWkZ187zjEHQFUp/uNX0DXCx5xN8ivvmcoxh6arT1NAaGNeyrSxtCorp3byfeeWljEAqLkN65wbqopWVEC0OxNZAg2FbEcCBZaGC60PNJpu8MtmlX/OdOPT/A8ZtqbpWBVoFyezfkc6wCmVUfsr/dsq+DT/5LyhWb1Pw2GFLomNf5omxjXzIrQ5OaoGraIksosMnvrGw23/c7PpFMaEULvEpcNsfHJzCJcMtfLjBpXL3nDx5gIPucWVH6AKfZonYuVcIKgBhfO+IeulpwkbPor4fz5cbTirZLWS8OCTlK5aTsTZ5wU18ZtAIAg8lphYJKsNX/rJa50rLWMBUBt45VzNzoJvPuJR+QuKrvyFfb4oPh7yCb0LVtGnQS05db5f56PUA+N7WfjvAi+5Jf5SZBP7WNmartE+XsZmkShWQ4DAOuepMRKx4RIr92gMbNew06W1+zR6t1awKuI7RCAIJn3bKLx/vZPZK3x8ssTH1jSdOz5y0z1Z5qLBVoZ2UpDrMNcLc0hccbqNKQOtzF7h48sVPr5bq3JefyvTBluJChV9v7kinHNBwOnZs2ewTQgYhmGQ9+kH5H7wFhHnTiH2lruQlMphhsVLfse7bw/Rl/4NAGtcApETzg+GuTWiKenT1BDamJcybSRZxpLQCl9G+knPsbT074PWcnPq1bbjMOC9rvfhVRyc46ko29gYg9p/2qCy6ZCO0wYXDrbw9q8+Fhx1zrel6wxq7x+PXYa/3FB8DZIs1RRJkujfTmH1noZdOfeqBhsP6lw9subJ48yMGNfMi9CmZtgsEpcMtXFWLwsfLvLx00aVzYd0/lvsZUhHJ5yCHx3mkLhqxFEnfbmPr1b5+Ga1j6mDrfTs2itwb0LQaBDOuSDgOEyc1Kk2GF4vWS89TdHPPxB9xXW0uOzqSivhhqaR+793yPv0AwAcXXsQ0m9gkKytOU1Fn6aI0Ma8HKuNNTEZX0bNV861woJ6s6tqDNbHDMNjcXK2zjHjVuNaiSnxGGxJ0wEY0FZBkuDtX31sOqRzMEcnLc+gS6JCicfA5fM76YFcOQcY2FZh/nqVI0WVE0TVJ5sP6XjVprHfHMS4ZmaENrWjZZg/s/uVI6zMXaWSFC2hHM3p4fH5w95HdbMwpKNS67KOEU6Jq8+wccEgK5/96eOzZT6+tqZwte5jQh9L+X0ETZ/Gv5lJYDpWrlwZbBNOGa2wgLR776Bo4c/E3/sI0ZdfU8kx1woLyHjwrnLHPHLyNJy9+gbJ2trRFPRpqghtzMux2lhbJeFLP/me85ABg2k39xeSnn+zPk2rEv3oeKVIoIX468YrcQkNbsepsOGAhm5AYguJhCiZ+EiZjgkyugHfrPGXKOuaKKNq0ClsP8M6KQEvO9a3jYIEDbp6vmafRlQItI1tGpNxMa6ZF6FN3WgZJnPNGTbG96qopvDHdo0/tmv8e46Haa+W8vrPHvYd0Wt97cgQiRtG2/jwRidxSjovzfdy7Tsulu1UMZpYUk9B1QjnXCD4C95DBzh02zV4D+wl6T+vEn7m+ErHPbt3cvDWqyld+SeS3U78Px8m9ua/m6KGuUAgqH+srZJQM9Ix9BNPvGSbHTk0tOFzTxgGZavksixhOPz7seWw8Ia14xRZu8/vEPdrU7GCPKyT/+eVezTCnX7HPTJEYkTsev59YeBXASNDJDq1klm1t+Gc87X7NPq2qds+VoFAEBx6JMtcMtRKyzCJQhd8tVLlmndc3Pahi/nrfbh9tXOs4yNlzohby5tXO2gZJvHALA93feJmR0bDJ6gUNCzCORcEnAkTJgTbhDrjWr+GQ7dfC4pCyivv4uzRp9LxooU/c+iOa1Ez0rAkJJL80juEjzk7OMbWkcasT1NHaGNejtXGmpiE4fMGpURaTTHKnHPJX+scaHSrLlvT/Q8/eqZUOOdle8zTcg06JcjlDz7qs+8MbKeweq+Gptf/36/YbbA9Q6dvm6YR0g5iXDMzQpvAkRDlX02feauTJy+yM7yTgizBljSdZ7/3cqSw9uPHhAkT6JSg8OwlDp68yE5+qcFNM9w8+bWbw/m1X5UXNA6Ecy4IOGvWrAm2CbXGMAzy584i7Z+3YW/fkeSX38GamHx8Q1XF8HgIGXAaKa/PwN6hU8Mbe4o0Rn2aC0Ib83KsNtZalFM78vrzZDx0N+qRrHqz7a8YhoFx1Gm1KGDRvABoJaUNZsOpoukGuzP9k8/OrSqmKh3iZWLDJSQJ2sb6Xz+Yo7N85bp6s6V/W4VCF+zKrP/J8Lr9/lD+fk3IORfjmnkR2gQeRZYY3MHCoxc6+Pw2J9eeYeWsXhZSWlaMY+8t9PLNah+lnhM77GX6SJL/mu9c6+TOs22s3adz1Vsu3vrFS5GrcT10FZwcEYcrCDiHDx8Otgm1Qvd6OPLyfyj66XsiJ08j5vrbKoWoG0ZFtuPwMWcjh0cQMuC047K2NxYamz7NCaGNeTlWG0urRJAkfOlpJ801UfLnYtTDGbS4+EossXH1bSYASmgYhuSfCMoyxPmyGHloPYlaJvD3BrHhVEnPM/CqEGKDpOiK8G5Flnj2EjtXveUuT5j2j0/d5BT1J7W7RudWgR+XuyXJhNhg1Z76uf6xrNitkRwt0Sqq6aydiHHNvAht6pfoMJnpQytXXcgtNvj8Tx+aDu8u9DK+t4VJ/a0ktji+z/9VH0WWmNjXyujuFmYt9/H5nz7mbfBx+TAb5/W3iNKLTYSmM/oLTEN4eOPZ1+jLyiTt7zdSvHABcfccv3fcvW0zaf93PWpeRSmk0MHDGq1jDo1Ln+aG0Ma8HKuNbLNjiYmtWcb2qBYAaPm59WZblfc8JiFcYoiXS3a+wugj8xrMhlMlpaXMN3eF8OLljuP2Xu847F8p6tJKIbfYILvIwABat6yfKY1FkejTRmFVPSeFMwyDlXs0BrdvvN8vVSHGNfMitGl47Fa4YbSN5GiJEg98uULlijddPDjbzdp9WqXtR9Xp47T5a6R/dJOTEZ0t/PcXL1e/7WLRNpE0rikgnHNBwBk/fvzJG5kA1/o1HLrlKrT8PJJeeouIsZX3jhf88DWH7rwR95aN5LzX8NmW64vGok9zRGhjXv6qjSWhZhnblUi/c67m59WLXdXxgONrAFqESshl3/SNbNIWYpfoEH+8o7o1TSOxhYTLa/DrFhWAlGgZp63+Vo0GtlXYnKafNAz1VNh3xCCr0CjfV99UEOOaeRHaNDyhdokLBlmZcYOTJ6fZGdhOwQCW7tD4x6duflinlrc9mT7RR0u7vX2Nk+RomUe/8vB/H7nZmiaSxjVmhHMuCDizZs0KtgknxDAM8ud8Tto9t2Fr046U12fg6Nil/LjucpH1wpMcefEp8PkIHTaS2JsaRyhoTTC7Ps0ZoY15+as21sSkGu05L185L8ivD7OqxNBUFE8xYd58LIqEgUKhtQUlSliD2VCfbEvXcVjh0jdcvLnAv58+SttZr/cc0E5B0/17wuuLFXtUHFbo1bppOediXDMvQpvgIUsSg9tbePpiB+9f7+S8fhaiQmBEl4rozXc//YGSGjwQbBsn89Q0B89Md1DqhVs/dPPYHDcZImlco0Q454JmhV5SQubjD5D9xotETp5K4tMvl0+eAVyb1nPwxsspnPcNSBLRV91AwkNPIYeGBtFqgUBgNvy1zmsQ1h4ZBYDWgCvnvvQ0En79gH8vvwpZgl0lYdw9fDZvdvhng9lwKmi6wV2fuHjtJw8ub+WJqU8z2JWp0/8vCdN6Ru6uV5sSW8i0ipLqtaTait0avVMVbBaxb1QgaE6kxsjcMd7OZ7eFEO7093/DMFh4pC/TXyvlvYVe8kpO7qQPaKvw36sd3D3RxsaDOn8TSeMaJSIhnCDgdOvWLdgmVIln1w4OP3Y/Wn4eCQ8+SdiI0ZWOFy9dxOFH7wVdxxIbR9w/HiCk36AgWVt/mFUfgdDGzPxVG2tiMnpRIVpxEcoJ6ocHY8+5oRvM6PpPVMnK9apRHtbeWKZn+7IN1u3X2ZGhc/PYysmUdmfq+DQY0dXCoPYW3vrVy3n9LSRL7evdroHt6m/feYnHYONBnVv+8n6bAmJcMy9CG3NxbEK3glKQLGGUlMCnS318ucLHhD4Wpp1mJTai+rVVRZYY39vKyK4WZq/w8dkykTSusSGcc0HAiYyMDLYJlTAMg8Lv55L9xovYUtvQ6skXsSWlHNcupO9ArAmJOLr3IuaWO1FCm0YI6F8xmz6CCoQ25uWv2lgTK8qpKcdsi/krZc65Xlxcf8b9BcMw+DNhHADXGiDLR1diaByTsp0Zfge4Y4J8XDK4bek6FtlfUs1mkXjrGicA+/bVf9/p31bhmzUq6Xl6lZmVT4U1ezU0nSa33xzEuGZmhDbmJSpU4onzCkj3JvPpUh/bM3TmrFL5bq3K+F4Wpg+1Eh9Z/TjktElcPtzGxD4WPljk47+/eJm72sd1o2yc3lkpr0IkMB8irF0QcJYtWxZsE8rRXaVkPv0wR15+hvDx55D08jvljrlWVEjuzA8xNP9EUHY6SX59BvH3PNRkHXMwlz6CyghtzMtftbEmJgPgSzt4wvPCRoym3Te/0urx5+vNtr9ybN43RQIjNAIAObJFNWeYi+0Z/n2SHROOn6JsTddof9QxP5aG6Dt92yjIEqyuh9D2JTs02sQ0rRJqZYhxzbwIbczN8j+XMbyzhdevcvCf6Q56pcj4NPh2rcrWtJrtJxdJ4xofYuVc0GTx7N3F4cf+hZp9hPj7HyN81FjAv6pU/NvPZL/5Ilp+HnJIKFHnXwhwwvBUgUAgKEMJj0CJaoHv0Imdc9nuaCCLKjg2fF1RQAoJBTQIaRy5M8qc86pqim9N1xnYNjiry6F2iW5JMqv2aJzbzxqw66qawbJdKpP6B+6aAoGg6SBJEv3bKvRv62T9fo2fN6mc3qViHFyxW6VVlEzKCcpJliWNW7VX461fvNz6oZszuipcO8rWJB8KNmaEcy4IOOPGjQvq/Q3DoPCHr8l+80WsicmkvD4DW0oqAJ7dOznyxgu4N6wFwJqSir1t/e9VNBPB1kdQPUIb81KVNtakFHyHDgTBmhOj6xXuuSJJFWHtjWDTuVc12J3pd867JlWeMBa6DNJyDS4ffrxz3lB9Z2A7hS+W+9B0A0UOTFjougM6xW4qTbabEmJcMy9CG3NTlT69UxV6p1aMFR6fwbPf+RPGjeyqcNkwG23jqne2B7RV6Hu1g583qrz/u4+/veVi8gArlwy1liejEwQX8ahEEHC2bNkStHtrhQUc/vd9HHnpacLHnE3yq+9hS0lFK8gn6+VnOHjzlbg3rEWy24m+6npa//cjnL36Bs3eYBBMfQQnRmhjXqrSxprcGm/aiZ1zQ9fJev4J0h/8B3pJSX2Z95ebHuOcy6Bo/nJjmsfbMPc/BXYe1lF1iAqBhMjKE8XtR/eid2l1/NSlofrOgHYKJR7YUsOQ0pqweJtKQqRE+xNMqBszYlwzL0Ibc1MTfYo9Bl2SZAxg4VaNa9918ciXbnYerj5svSxp3Ic3Orl0mJVv1vi4/L+lfLnCh09rBE9xmzhi5VwQcA4dOnl5ofrAtWEtmU8/jO52k/DQU4SdPqr8WOazj1G6fAkAYSPPpOX1t2GNSwiKncEmWPoITo7QxrxUpY0tuTUlixdiGEa1yXUkWaZo0S8YpaWoeTnYGqAsoxxasT1HlqGlL4chGWuI82UBN9b7/U+FglKD6FCJzonycX/TrWk64Q5Ijj7+b91Qfadjgkx0qMQf21V6ppz6SrduGCzZoTG6e9NN0CTGNfMitDE3NdGnZZjMYxc62J2p8fESH39s0/hju//faR0Urhtlo01s1Q/+qksad/VIGyO7Kscl5BQ0DMI5FwSckJCQBr2foankfjyDvE9n4Ojem/h7H8EaF4+h60hHawhFX3kdavYRYm/6P5y9+zWofWajofUR1ByhjXmpShtrUgp6STFafh6WFtHVnmuJisZXWuqvdZ7cuj7NBECJiQVK/feWITnCR+9t/wGHk2A755kFOjnFRnm29b8ytJOFIR0V3L7jz92WrtMlsWontqH6jiJLnN5F4Y9tGjeeaZzy5HVrmk5uicHpnZvudEyMa+ZFaGNuaqNP+3iFh6co7Dui8+lSL79t0fhzl8bfRp58JbwsadzkAVbe+c3L43M9zFwq87eRVk7r0HQfHJqVphlDJQgq559/foPdy5eZQdpdN5P36QdEX34tSc++BrpGxr/vI+e918vbOTp2IeXND5u9Yw4Nq4+gdghtzEtV2liPOtq+k4S2y5FRAH7nvAGwWeBK7QcAQuxU7I0OcrTikSKd699zcduHbq5408Wh3KpDwyVJwmmrPBk0DINt6RpdEquetjRk3xnZxUJWocG29FMPbf9ti0p0qHTc/vqmhBjXzIvQxtzURZ82sTL3n+/g/eud3DzGRof4igifr1b6WLdfw6gmAUnbOJknpzl4+XIHoXZ4YJaH2//nZt1+kdm9IWm63waCoDFz5swGuU/R7ws4eMPlqNlZJL3wJpGTLyLn/TfZf/U0Sv74jYK5s9EKC8rbiyd/fhpKH0HtEdqYl6q0sSYmgSSdNGO7UuacF+TXg2VVoOs41WKsmhurImEg4VYceGRbw9y/Gl7/yUux2/+zWzUoclWeIHpVA72aSWNGvkGBi2qd84bsOz1SZFqESizcqp7SdXyawS+bVcb0sAQsuZwZEeOaeRHamJtT0SelpcwFgyoqQGQW6Lz1i5e7PnHzfx+5WbVHrdZJ75Gi8MJlDp652I6mw12fuLn7Uxfb0oWT3hA03TgqQZNFd7nIfuMFCud/S9gZY4i59R+ULPqFjIfvQT86+XX2GUDMTXegREQG11iBQNBkke0OLHHxeE+Ssd0S5a8vruXnNoRZePftoe/St3jcNhtZ/o5deXbeHfE9rYt3MqNBLDie9DydP7ZryBI8fbGD2HCJ1jGVHe2vVvr44k8fFw+xcdFplcuKla1Sd6mivFpDo8gSp3c+9dD25bs0Cl0wrqeYigkEgvrFqsCEPhbmrVfZdEjnn5956Jooc8lQK6d1PH5/uSRJDGhnoX9bhSU7NN7/3cstH7gZ2knhbyNstGuiCSzNgPhGEAScTp061du1Pbu2c/jJh1CPZBJ317+wdehE2p034juwD/CXRou54XZCBg0VK+XVUJ/6CE4NoY15qU4ba3LqScupyeXOeX6gzaoSj8/gk07/h1e200cHqXwOFbwx8fdt/lXmPqky/auoU24YBot3aBS4/JPIv7I1XaNVlERUaNXvoaH7zhldLXyzRmVrmk735Lo9MPhxg0qnBPmEZY+aAmJcMy9CG3MTSH2iw2TuGG/nkmFWvvjTx3drVbam6zw420PbWIn7zrPTPv74sUySJIZ39ucC+XWLxoeLvFz/rotR3RQuHVZ9sjlB3RHOuSDgxMXFBfyahqaRP+sTcj58G3ubdqS88SG2lFTU7COoWZnIEZFEX3EdkRMnIVnEx/pE1Ic+gsAgtDEv1WljS07BtX7NCc8tWznXiwoDbldVqDosSjrXf0+jYs95MLecL9rqD4cc0aVifDYMg4VbNf7cpTK2p5WtaTpWpep631vTdbpWE9IODd93eqTIxIRL/LxRrZNznldisHy3xs1jgrvVoCEQ45p5EdqYm/rQJzZc5paxdqYPsTJ7hcq3a3xk5BvEhJ/YyVZkibE9LIzqqjBvvcqnS31c+46LkV39TrpYSQ8c4i8pCDiLFy8O6PV8h9NJu/sWct5/k8iJUwgfOxFbSioAlphYWj36DKkfzibq/AuFY14DAq2PIHAIbcxLddpYk1vjSzuEoVW/Fy9iwiTaffMb8fc+Uk/WVebYfduSBFKIv3yb4Qyv7pR6xasaRIZIRIXA8GOykh8pMnjmWw8LNmn8c6Z/M/o5fS3HTRJ9msGuw/5M7dXR0H1HkSXO6mnh1y0qbl/tH3v8sllFAkZ1a/rfWWJcMy9CG3NTn/pEh8lcP9rGzFtD+PeFDiJDKqKSHv3KzWfLvJR4jh/bLIrEuf2s/O8mJ38/28a2dJ3rjtZW35Up9qQHAuGcC0yLYRgU/jyPAzdchu9wOuFnjqfwx2/JfvNFStetLm8X0m8QSlhwJp0CgaB5Y01qjeHzoh7JrLaN7HQiO50NZpNxTPi6BChHy/HojuCUTbJZJJ6+2MHsO0JocUxYelyEzD3n2FGOzkSSoyUuGXr8SvKeLB2fVn0yuGAxvreFEg/8XsvEcJpu8PVqH6d3USpNiAUCgaChCXNIlbYabT6ksWibxju/+bjk9VLeX+glv+R4J92qSEzsa+XDG53cPdHG7iydG95z8+AsN9szhJN+KjT9R7aCBmf06NGnfA2tsIAjL/+H4kW/YO/YBd/hNIoWzAPA3qU7slPU5qwrgdBHUD8IbcxLddrYjpZT8x48gDUhsSFNqhbjmApfkgTyUZ+2msS8DUZVeUBGd7eQ2EJi52GdcT0t2K3Ht9mapmORoWNC9c55MPpOYguZge0UvlqpMq6npcZ5Tv7cpZGeZ/Cv860nb9wEEOOaeRHamJtg6NOplczd59j4fJmPAzkGnyz1MXuFjwl9LFx0mpW4iMrjsEWRGN/bytieFn7drPLxEh83z3AzqL3C9CFWeqbIIgdULTHXY2hBk2D37t2ndH7pmhXsv+5SSpYvQQ6PwLNzG3pREdbWbUh45BmSX3kXR+euAbK2+XGq+gjqD6GNealOG0tcPJLdju/A3mrP1V2lZD7/BBkP3Y2hn3pt7JNh/CWsXdZ8/tfVUyv9VVdc3hM/FeiSqHBuP2uVjjn4M7W3j5exWaqf4AWr71wwyMKuTJ0NB2qmq2EYzFzqo3uyfMIw/aaEGNfMi9DG3ARDH6siMb6Xlfeud/LIFDudW8l4VJizSuWyN1xsSat6VVyRJcb2tPL+9U7uP9/OkUKdv3/s5rb/uVm8Xa22TKbgeIRzLgg4+/fvr9N5usfNkTdeJP2ft2NrnYoSEYFeVIglLoG4fzxA67c/IWzYSPEE7hSpqz6C+kdoY16q00ZSFGwpqXj3V++cSxYrRfO/pWTZH+jFRfVlYjlyWFjFvYEotYD+WQvpcejXer93VVz5XxfTXyvlQHbdHkxsS9fo3OrE05Vg9Z0BbRXaxkp8tNhbo/Yr92hsTde5YnjzWDUHMa6ZGaGNuQmmPrIkcXoXC69f5eCZ6Q76pMrERUiVxuLMAv24WumKLHFmdwvvXOvkiYvsWGR4+EsP17ztYv56Hz5NOOknQ4S1CwKOzVb77LPuXTs4/Mg/UXOyibnp70ROmkrJkt9Rj2QRec5kpDpcU1A1ddFH0DAIbczLibSxpbY7sXNutSKHhqGXFKPl56FERNaHieVY4hOBUv+9JYmUSI3rNz+GrliBK+r13n8lt9ggp9hAliA2ovYPVotcBgdzDS4ZdmLnPFh9R5Ikrhph4+EvPazZq9GvijJxZWi6wdu/eumRXHU5uaaKGNfMi9DG3JhBH0mSGNBWYUBbJ4Uuo7z6h08zuO1DN+EOmDLIypjulbclSZLEaR0snNbBwuZDGp/96ePZ773MWOTjgkFWzuljIcQuFtuqQqycCwLOBRdcUOO2uqqS9cKTHLrpCtTMDFpcfAVRU6YhyTJhp4/y/2yCwakpURt9BA2L0Ma8nEgba2pbvPv3HreCcCxKea3zvIDb9lcinDCudCERFAMgy8GbAO074l8tb9VCwmmrvR1liYW6niQEPJh9Z1gnhW5JMq/+5MGrVv8ZmLNKZd8Rg1vG2ZpVBJgY18yL0MbcmE2fCGfFuLUnS6fUa7Av2+CFH7xMf62U9xZ6ySw4PkKqe7LCYxc6eO86J/3bKrz7m5fpr/vb5xTX/1avxoZwzgUBZ9asWTVqV7hgPnsvOIvCed8AINlsyHZ7fZomoOb6CBoeoY15OZE29tS2/lXxnCPVtlEiowDQCurfOZclcGpurIbfsZVlCQPQaXiHcN/RUPY2MXWbbmw+pBPu9GdyPxHB7DuSJPH3s+2k5Rl8sMhXZZtdmRrv/uZl0gALnRKaz6o5iHHNzAhtzI2Z9encSuGzW0O48Uwb8ZESBS74dKmPS193cd/nVZdVaxPrr9Dxyc1OxveyMGeVj0tec/H0tx52HhYZ3ssQYe2CgKOeJOlQ6fo1HHnhKXzpB/0vWCxEnjOFFhdfgaVlTANY2Lw5mT6C4CG0MS8n0saa2hYA7/69WGLiqmyjtIgGGmbl3LNtMxNWPcsQRyzwLTuzFR4f9QtxpQeZWe93r8z+o855ah2d8y1pOt0SlZOuNAe777SLk7l2lI23fvGS2ELinL4Ve8rTcnX+9YWH1Bh/XeHmRrC1EVSP0MbcmF2fMIfE1MFWpgy0sGSHxrdrfKzZp7Nit8Z1oyrGOt0wkI8Zw2MjZG4aY+fy4TZ+WK8yZ6WPnzeq9G4tM2WglSEdlfLw+eaIcM4FAaddu3bVHvOlH+LwI//0J0WSZSLGn0f05VdXO6EVBJ4T6SMILkIb83IibawJiUg2O979ewnpP7jKNuUr5/n59WBdZUq8ErPa34hPsTOQilJqBGPl/GhYe5vY2jvnumGwNV3josEnT55mhr4zdZCFjDydF+d52XhQ4/TOFvZn63z+p4/oUIknp9lPmHG+qWIGbQRVI7QxN41FH0WWGNHFwoguFtJydZbv1mgXVzHmP/udl/xSg/G9LAzpqJSPg2EOiYsGW7lgoIXF2zW+XOnj4S89JLaQmDzAyvhezXNfunDOBQGndevWlX53b9uMEhtPyeKF5Lz7GnJIGCGn9Sb2tn9gjUsIkpXNl7/qIzAPQhvzciJtJEXB1vrEGdvL95wXFgTctr/iUmUWtJ6KovtXXRTFP7kxGtg5NwzjmJXz2t/7QLZBiQe6JZ08DNwMfUeSJG4/y0b7eJmPF/tYsMmDwwpndrdw3Sgb4c7mN8kEc2gjqBqhjblpjPokRctMia5wzF1eg9+3qnhUWLFbI9wBo7pZOKuXhc6t/DXQFVliZFcLI7ta2Jau8eUKH//9xcsHi7yc3dvC5AFWEqKaz07soL/ToqIi7rnnHsaNG0dsbCySJPHII48E2yzBKbBw4UIA3Nu3kv6vOzl02zUcuu0asl97joixE0n94AsSH3tOOOZBokwfgfkQ2piXk2ljTW2Ld9+eao+3mHY57b75jdhb7gywZcdTUU/W/7/sDAFAsznr/d7H4tNgZFcLPVNkUqJrP93YnKYhS9Al8eTnmqXvSJI/pP3TW518eUcIc/4ewp0T7M3WMQfzaCM4HqGNuWkK+jhtEu9c6+SSoVZiwyWK3PDNGpVbPnBzzTsuftpYOU9Hl0SFf01y8MnNTs7rZ+XHDSqXv+ni4dlu1uzVTph4takQ9JXznJwc3n77bXr37s2kSZN49913g22S4BQJycki/cF/UPrn4vLX9OIiEp95hZB+g4JomUAgENQPttR2lC5fimEYVe6PlkNCG8yWsrmLdNQ5tzidgAfN6mgwGwBsFn+itLqyJU2nTazcKMMaZUkiquEkFwgEAtOSFC1zzRk2rhphZe1+nZ82+Phju8b+bH+pzTJ8moFh+L87YiP8eTwuHWZlwSaVuat83D3TTeuWEuf1szK2p4UwR+P7bqgJQXfOU1NTycvLQ5IksrOzhXPeiPHs2Unu/96l+5Lfj1bY9RM28kzi/n4/cqiYqZiBESNGBNsEQTUIbczLybSxpbZFLy5Cy8nGEhPbQFZVTdlURzrqpStK5dcbC1sOafRqXbPM5qLvmBehjXkR2pibpqaPIpfVTFcodhss3KpyWoeKMX7RNo1Xf/QwqpuFM7tb6J4s47RJnNvPyjl9LWw4oPP1ah9vLPDy7kIvY3tYOL+/lbZxQQ8EDyhBfzeSJDWrep9NmcJ531Cy5Hf/BFCSUWLiSHz6ZRIeeEI45iYiLS0t2CYIqkFoY15Opo2tPGN71aHtal4Omc8/weGnHgq4bX/F0CuHtStHS6pZSgtJu+fWBgsLLCg18Pjqdq8il8GBHINuSTWbpoi+Y16ENuZFaGNumrI+YQ7/FqCY8IoxftlOtTzs/Y6P3Fz+pov3F3rZn60jSRK9UxUemuJg5q1OLhpsZelOjWvfdfH3j1ws3KKiao3tEXTVBN05PxUKCwsr/fN4PME2qVnh3b8X74F95b+HDBiMHBYGQNTU6aTO+KLazMWC4LF79+5gmyCoBqGNeTmZNtaERCS7Hc/e6tsVzf+W4t9+xtDqtzyOHOofhw3J/xUf4i2gR86fdM5fh2vtKvBVXYs70Lz+s4cJz5Yyd1Xt77cl3f9AoXtyzVbORd8xL0Ib8yK0MTfNTZ/7zrPzzMV2xva04LRBRr7BJ0t9XP22i5tnuPCqfuc7JlzmyhE2Pr3FyYOT/FunHpvr4ZLXXXy4yEt2kR5Quzwez3E+Z30S9LD2UyElJaXS71OmTOHmm29m0KBBfPfddwD069cPXddZt24dAOeffz6LFy8mJyeH6OhoRowYwdy5cwHo1asXVquV1atXAzBx4kRWrVpFZmYmERERjBs3jtmzZwPQvXt3wsLCWL58OQBnnXUWmzZtIi0tjdDQUM455xw+//xzADp37kxMTAxLliwBYMyYMezYsYMDBw5gt9uZMmUKn3/+Obqu0759e5KSkli0aBEAZ5xxBgcOHGDPnj1YLBamTp3Kl19+idfrJTU1lfbt2/Prr78CMHz4cLKystixYwcA06dP5+uvv6a0tJTk5GS6devGTz/9BMCQIUMoKChgy5YtAEydOpX58+dTVFREQkIC/fr144cffgBg4MCBuN1uNm7cCMA5gwaw6+X/ELZ1I652nWjz+PNsePxB4resg5RUVg8dgxEWA3PmcO6557Js2TKys7Np0aIFZ5xxBnPmzAGgZ8+eOBwOVq5cCcCECRNYs2YNhw8fJjw8nPHjxzNr1iwAunXrRmRkJMuWLQNg3LhxbNmyhUOHDhESEsL555/PzJn+Cr6dOnUiLi6OxYv9e95Hjx7N7t272b9/PzabjQsuuIBZs2ahqirt2rWjdevW5Uk3RowYQVpaGrt370aWZaZNm8ZXX32Fx+OhdevWdOrUiQULFgAwbNgwsrOz2b59OwDTpk3ju+++o6SkhKSkJHr06MGPP/4IwODBgykuLmbz5s0AXHjhhfz0008UFhYSHx/PgAED+P777wHo378/Pp+PDRs2ADBp0iQWLVpEbm4uLVu2ZPjw4Xz99dcA9OnTB1mWWbNmjV+bc85hxYoVZGVlERkZyZlnnslXX30FQI8ePQgJCSE9PZ2ZM2dy9tlns379etLT0wkLC2PChAl88cUXAHTp0oXo6GiWLl0KwNixY9m2bRsHDx7E6XQyadIkPvvsMwzDoGPHjiQkJPDHH38AMGrUKPbt28fevXuxWq1ceOGFzJ49G5/PR9u2bWnTpg2//fYbAKeffjqHDx9m586dSJLExRdfzNy5c3G5XKSkpNClSxd+/vlnAIYOHUpubi7btm0D4KKLLuKHH36guLiYxMREevfuzbx58wAYNGgQpaWlbNq0qXxs+OWXXygoKCAuLs60Y0SZNo19jJg8eTILFy4kLy+PmJgYhgwZwrfffgtA3759AVi7di1AoxkjyrQ50RjROyaews0bmO+Tjh8jDIOBsgK6xpcfzCCuY+d6GSMSvS7C9hwG+x1okoWtW7eie3zcvPGh8hX03xb8TGZBYbVjxIoVKwBOeYzYuCsbaEF+5h4OHQqt1Rgx68d0HHIbjJI8Vu05+RiRnp7O/v37m/wY0RjnEenp6ezatavJjxGNcR6Rnp7O1q1baz2PCNQYIeYRJx4jioqK2LNnT5MfI6BiHrFz40ZSgRtvmMSMb7ewPjOKNHccimTw5azPyseIrZl2Cg+twiarPDb5XL7+ZT1LD0Qxc2kKHy9RSHFm0CV8P+MHxRPiPLUx4qWXXirvAw2BZJgo7V12djaxsbE8/PDDJ8zYXljon1QcPHiQiIiI8tftdjt2e92TzwhOjDftIHmfzKDol/mg+59K2bv2QM0+gl6YT/SV1xM1ZRqS0qif+QgEAkGdyHr5GdybNtD6nU+qPL734nPRco6Q/NoMHJ271osNxYt+5dDjD7G15QC+7/t/vHtPGzTd4LKHtvPY8qsAaDtrXnlpt/pkyoslFLjg7WsctI+v2Qp4GXd/6sJmkXjiooZNYicQCAQCc1FQapBXYtAm1h8Nll9iMPWVUiwKDO2ocGZ3CwPbK1gViWK3wa+bVb5bq7I7SycuQuLs3hbO7m0hNqJuAeMej6dSdHZhYSEpKSkUFBRU8kMDRaMOa4+IiKj0Tzjm9YMvI43M5x7nwNUXU/TzD6DrOPsOwNG9F56tm7C1bkPrdz6lxdRLkRRLgz5dEtQeoY95EdqYl5poY2/fCe+Bfeged5XHLdEtAdByswNq27EYPi8WQyXacwSn5A+flyXICklBPxrmbjRAWHuJx6DA5f+5VS3r02q6wbZ0vcb7zUH0HTMjtDEvQhtzI/TxExkilTvmAFmFOsnREl4VFm7VeHC2h6mvlPLSPA97snTO6WfhrWscvH6VgwHtFD7/08clr7t4YJabZTtVNL1269J2u/04n7M+EUucgpNSunIZRT/6Q3ecA07DEhNL0S/zsbRoScJDTxE6/IxKSf3E3n9zI/QxL0Ib81ITbewdOoGu4d23B0fnbscdV1rGwE5Qc3Pqw0QADJ/fIdckBeXosLzniAGGwf3DPuPNFp8jNcCD7PQ8f3RVVAi1LoW2P9ug1Avdkmq+2i76jnkR2pgXoY25EfpUTadWCu9f72Rnps6CTSq/bdbILTH4dq3Kt2tV/jHRxtm9rXRJVOiSqHDjmTZ+3azywzqVB2Z5iA2XGH90NT0+0nzr1MI5FxyHe+c29KIiQvoNBCBi/Hm4tm7CltqOwu++wrV+NS0uuowWF1+J7Dg+5LB169YNbbKgFgh9zIvQxrzURBtb2/YgK3h276jSObe0jAFAzTkScPvKMHxeiqyR/JZ4Pke0o1UyDAMkCbc1jNjb7663ex9Lep5/ZaJVi9pPfDYf0pAl6JJY83NF3zEvQhvzIrQxN0Kf6pEkiU4JCp0SFG4YbbB2v86vm1WW7VQZ2rHCvf19q8rBHJ3R3S2c28/KjgyN79epzF7h4+PFPga1Vxjf28KQjv6weDNgCud83rx5lJSUUFRUBMCWLVvKkyFMmDCBkJCQYJrXLDAMA9f6NeR99j9cq5djTUqh9XufISkKvswMtLw8che8QcigoSQ+8yq2pJRqr9WpU6cGtFxQW4Q+5kVoY15qoo1sd2BrnYpn144qjytHw9r1ovrL9Gr4fBRbI1naajyKdjRj7dHIpoZMMJOe7793YlTtJzvrD2h0buWvb1tTRN8xL0Ib8yK0MTdCn5pxbP10TbehyBXfHV+t9LHpkM6MRT66JMqM7mbhitOt3Himjd+2+FfTH/3KQ4QTzuxu4axeFjrEy0Et822KtfybbrqJqVOncvXVVwMwa9Yspk6dytSpU8nKygqydU0bQ9MoXvI7h26/lvS7b8G1ejnICvYu3fBlZnDktec4cN0l+NIO0OrR/9Dq8edP6JgD5VlIBeZE6GNehDbmpaba2Np3rNY5b3HhJbT7diGxt9wVQMsqY/i8GJRNKvzuePkUwwA1L7dB9py3i5MZ39tCv7a1SwRnGAYbDuj0al2780TfMS9CG/MitDE3Qp/ac6xjbhgGE/taGNBWQZZgW7rOGwu8XPyqiwdnuVFkeO0qJ+9d5+Ts3lZ+36px4/turn/PzZcrfOSVBCdnuilWzvft2xdsE5olJcuXkP3Gi/jSDwEg2exEnHUOEZOmUrrsDw7ddCUALf92I5GTL0K2iYR7AoFAcCLs7TtRsuR3DE1DUio7mHJIaL3f31ArHO+yB/9lUxVF9bDvoskkPf8mzl5969WOwe0tDG5f+ynGoVyDnGKD3qmmWDsQCAQCQSNFkiTG9bQyrqeV3GKDRdtUft2isvmQztr9OjaLxlm9rLSJlbl+tI3Lh1vYcEBn/gaVd37z8tavXgZ3UBjfy8Lg9gqWBgp7N4VzLmg4DMMoD9WQHU586YeQw8KJOGcykZOn4V6/hoz7/w/1yBEiz51M9GXX1LrkzrBhw+rDdEGAEPqYF6GNeampNvYOnTHcbnxpB7G1blO/RlVBi4uvJPH0afBxhVNe5qSXrQEYPm+D21VTNhzw7zfvkVy7lXPRd8yL0Ma8CG3MjdAncESHSUwaYGXSACuH83V+26LSLq7iIXBmgc6177gY2snvjN861sYf2zV+3KDy0GwPUSEVYe8xjvpdURfOeTOgbD95wZzPsSYmE3PD7QA4evUl/r5HCTntdDxbN3L4obvxbN9C6NARJD71MraU1DrdLzs7WySxMDFCH/MitDEvNdXG3r4jAJ5dO45zznVXKUfeeBEtJ5tWjz133Mp6IPBfU8Lvivu98oqtc0f3nqtqwO97LJpucCjXoFWUhM1Su5WG9Qc0OibIhNYyw7voO+ZFaGNehDbmRuhTPyREyUwfaqv02tIdGqVeWLBJY8EmjXAnDO9k4eozrESGSPyySWXBJpUvV6okhbnq1T4RN9aE0YqLyJ/zOQeunU763bdQsnQRhfO+Ka/BK0kSlrgEMh68i/R77wBJIvG512n16H/q7JgDbN++PVBvQVAPCH3Mi9DGvNRUGyUiEktCIu7tW447JtlsFP34HaUrl6EV5AfYwgq0o+V3ypxyhxUsaKQW7wTA8Nbvynl6nsHVb7u44KVSDKPmKwyGYbD+gE7vWu43B9F3zIzQxrwIbcyN0KfhmDTAwitXOJg8wEKLUIkiF8xbr3LvZx7umelmVDcLn98WwhMX2UlpWb/us1g5b4K4d2yj4JvZFC/8GaNskuZwED52AlGTLkK2O3Dv2EbuB/+ldOWf2Np1pNVjzxEyeFhQsxMKBAJBU8DRrQfuLRuPe11SLChRLdDyctFys7Eczd4eSArnfUPeit1gvb78tfhImUjZzWU7XwKo94RwZZnaE6Jql/E2Pc8gu0jsNxcIBAJBwyJJEt2TFbonK9w0xp+YdNE2lUXbVEq9kBojY1EkTutgoaTIwpP1aItwzpsgxb8voOjH7wB/3d3IcyYTduZ4lNAwPLu2k/HovZQsXog1JZX4Bx4n7PTRSHLgJkPTpk0L2LUEgUfoY16ENualNto4uvakeNGv6F7PcYk0LS1j0PJyUXNysHcItJXg2rSeiKULGJcaRsHg84BwAGQZNPwr0vW95zzjaI3z2pZRW1fH/eYg+o6ZEdqYF6GNuRH6BAdFlujbRqFvG4Vbx9k4kG1UKu358ZL6fcAtHk83YgzDwLVlI1kvPkXp2lXlr0dOnET4mLNJeultUt76mMjzLsS7fy/p/7qTgzddiWf3TuL+8QCt3/mE8JFjAuqYA3z33XcBvZ4gsAh9zIvQxrzURhtHt56gqnh2bDvumBIdA4CacyRgth2L4fNh0z1E+vKICqmYTCgSaEe/8ut7z3l63tEa5y1q992yeo+/vnmYo/YRXKLvmBehjXkR2pgboU/wUWSJtsckjvNpBiO6Bj5fzLGIlfNGiJqdRdGC+RT+9D2+g/sB0AryCek7AABrYjLx/3zY77yvXUXezA9wrVuNLbUt8fc+QtgZY5CU+pO+pKSk3q4tOHWEPuZFaGNeaqONvV0HJIcD99ZNOHv0rnTM0tLvnGu5OQG1r4yyVXFVtqFY/ROIw/k6Wb4Qnu/zPG8538WamFwv9y4jPf/oynmLmjvZmm6wZp/GpAHWOt1T9B3zIrQxL0IbcyP0MR9WReKCgTaursd7COe8kWDoOsV//OpPJrR6Bej+lQnJ4SDs9NFEjD+3oq2mUbLsD/K++BjP1k3YO3Ym4aGnCB02MuCr5FWRlJRU7/cQ1B2hj3kR2piX2mgjWSzYO3Wtct95+cp5bnbAbDsWw+ejwBbN1qh+WAv9jq5ugI5EqSWMuNvvQXY66+XeZZStnLeqxcr59gydIjcMbFe3FQnRd8yL0Ma8CG3MjdCneSKccxNzbE1yJIm8Tz/Au2cXAI4evYk46xzCRoxGDgkFQC8tofDH78if8wVqRhqOnn1p9eSLhAw4rUETvfXo0aPB7iWoPUIf8yK0MS+11cbRrSdFP31feRynYuVcLy4OqH1lGD4fufZYtrXsjzPHv4J97PBveNxQj865bhhk5Nd+z/mqPRqhduiSWLcHyKLvmBehjXkR2pgboU/zROw5NxmGruPatI4jrz7H/ssnox8NaZEkiagLptPikqto/cEskl98i4jx5yKHhOLLyiT7nVfZd8n5ZL/1Co6u3Ul+bQbJL7xJ6MAhDZ6B/ccff2zQ+wlqh9DHvAhtzEtttXF27YGWm4OamVHp9fBxE2j33UIS7v93IM0rx/D5yr3xsrG/osy5hFqQj+711Mu9AVQNLhlq5axeFuIiav7ds3KPRr82Copct+8r0XfMi9DGvAhtzI3Qp3kiVs5NgGEYeHZup3jhzxQvXIB6JLP8WMmffxB+5ngAIsZNrHSOe+smCuZ8QfGiX5GdTiImTiLy/KlY4+Ib/D0IBAKBoAJHt54AuLdswpqQWP66bHfU630Nnxf96HP3YwKv/P8bOgevnU7UtMuJufaWerm/zSJx+XBbrc4pchlsS9f5v/G1O08gEAgEgqaGcM6DjGvjOjKfeQQ183D5a3JIKKHDRhI2aiwhfQdWaq+7Sin65UcKvv0K756dWFolEXPTHUScdQ6yM6Shza+SwYMHB9sEwQkQ+pgXoY15qa02SlQLrMmtcW1YS/jocfVk1fEkPfMKBz/5CapIBm8cXUM31PotA1Nb1uzT0A0YUMf95iD6jpkR2pgXoY25Efo0T4Rz3oDoXg+u1SuQQkII6d0fAEt8K9TMw0gOB6GDhvkd8kFDjquN69m7m8Jvv6Lwl3kYbjehg4fR8tqbCek/uEGSvNWG4nraSykIDEIf8yK0MS910Sak70BKVv1Z6TXDMDjy6rP40g4Sf+8jWFq0DJSJAJTKITxyZAzgDzEHOC5S3Ft/zvneLB2L4s/UXtMQ9WW7NFJjJOIj6/5dJvqOeRHamBehjbkR+jRPhHNez2hFhZSuXEbx4t8pXbkMw+0iZOBp5c65NS6exP+8hqNrD2RH5XBH3e2mZPFvFHw/F/em9SjRLYmaPI2ICedjjUsIxtupEZs3b6ZXr17BNkNQDUIf8yK0MS910cbZfxAF336JLyMNayt/1l1JkihduQz1cAa+tIMBd841HYba9/CHpwOWowvRigw2xaBH1hKgotxaffDfX7ys2qtx5wQbE/ucvCyaqhks26kyqX/dSqiVIfqOeRHamBehjbkR+jRPhHNeT+R/9RnFi3/HvXkD6Fr565bYOGyp7Spl8C2rTw4Ve8mLfvyO4oUL0EtLcPbpT8IDT/hLoVmEZAKBQNAYcPbpD7JC6eoVRJ4zufx1a0KS3zlPT8PZo09A7+n7+DWG783mz/jb6Z7s3+rUIlSiRQhEu/35TAxf/a2cH8jxl1FLbVmzVfB1B3SK3TC8c91D2gUCgUAgaCoITy8A6F4Pnh1bK02ySv5cjHvjWgBsqW0JHTqC0GFnYO/Upcrs6Wr2EYoWzKPwp+/xHdyPJS6ByMnTiBg3AWtickO9lYBw4YUXBtsEwQkQ+pgXoY15qYs2SmgYji7dKF3zF+c8MQnXulX4MtIDaSIART//QJv8POLCL2B4p66Af7W+R7LCyuzRLE8Yy2Pqp9RH2lCX1yCr0F9GLaWGzvnibSoJkRId4k9te5boO+ZFaGNehDbmRujTPDHXZuVGhJqdRcH3c8l46G72XnAWaX+/ETUnu/x45KSLiLn1H6R+9BWt351Jy6tvwtG5ayXHXC8toWjBPNLv/zv7Lj2f3I/ew96pC4nPvELqR1/R8qrrG51jDvDTTz8F2wTBCRD6mBehjXmpqzbO/oNwrV2FoVVEUJWFuPsyDgXEtmM5ZGnF8vgzKbWGEeao+L4Jc8q4lFCKbC1wqfXz1X8w179qHhUCkSEn32+u6QaLd2gM76yccslP0XfMi9DGvAhtzI3Qp3kiVs5rgWfvLooWzKN01Qq8e3ZWOqa0jMWXkYalZQwAYUNHVHkN3euhdMUyin/7mZI/F2N4PTi69yL29nsIO2MMSmhYvb+P+qawsDDYJghOgNDHvAhtzEtdtQnpN4i8j97Ds2Mrjq49gGOc8/S0gNlXxvrwfsxp8zdsqquyc+6Qyuud6226BPy+AAeya7dqvjVNJ6/E4PTOpz4VEX3HvAhtzIvQxtwIfZonwjmvBsMw8O7bjRIRVe5we/fsIv+LT/wNJAl7l+6EDh5K6ODh2Np3rPbJv6GpuNaupui3nyhZvBC9tARb+05EX3EtYaPGmjq5W12Ijxd11s2M0Me8CG3MS121cXTpjhQSQunqFeXOuSXR75yrGYF1zg3DwC35a4UbkkTYMTlGwxwSXsVfBcQ68uyA3reMg0f3m7euoXO+aJtKi1CJbsmnvpIv+o55EdqYF6GNuRH6NE+Ec34Mam4OrjUrKF29gtI1K9Byc2h5zc20uPgKAJz9BhI+biIh/Qfh7DsQS4voaq9l+HyUrltFyZLfKVnyO1p+HtakFCKnXEz4qLHYWrdpoHfV8AwYMODkjQRBQ+hjXoQ25qWu2kgWCyH9B1Oy7A+iL7saoGK7kqygez3Hlc6sM5qGV/Zfy0AizF7xwDjUAYbkd4JdXiMw9/sL+7OPOucxJ3e2Vc3gl80qZ/awIJ9iSDuIvmNmhDbmRWhjboQ+zZNmv+dcKy7iyBsvcuCGy9g3bSKZzzxK0YJ5aLk5SHY7eklJeVtLi5bE3/0g4aPPqtIx110uiv/4lcNPPcTeqWeTcf/fca1dRfjYCSS//gGtZ3xByyuva9KOOcD3338fbBMEJ0DoY16ENublVLQJGzYSz46t+LL82dKV0DDazl1A28+/C5xjjr9EmkdxAqBLcuWw9mMcdZdHD9g9j2ViXwtXnm6lT+rJpxbLd2vkl8JZvU6thFoZou+YF6GNeRHamBuhT/OkWa2ca4UFuDasxdBUwkeOAUC2Oyic9zWG2w2AvWNnnP0HE9J/MM5uPZFstpNes+TPxZQs+Z3SVcsxvB5s7ToQdcHFhA4bia1th1NOdCMQCASCxkvI4GFgsVCy9HeiJl0EUC/5RQyf7xjnXFq7gfUAACz7SURBVCH0GL8/zCER5s2n2BZF+gcz4IUbAn7/ge0sDGxXs7bzN6h0TJBpH9fs1wgEAoFAICinSTvnvqxM3Fs34t60Htf6NXj37gbAmpJa7pxLVistr74JJbolIb37o0S1OOE1DV3Hs3sHpSuWUrpiGe6tm8AwcHTrSfRV1xM2bGSjzLAeSPr37x9sEwQnQOhjXoQ25uVUtFHCwgnpO5Di338pd87rAzksHHngCDgAFknHohybEA4suo+Uop04fMX1ZkNNyCsxWL5L4+YxJ374XRtE3zEvQhvzIrQxN0Kf5kmTcc4NTUNSlPLf0/5xM671a45rZ0tti7NXv0rtoyZPO+G1tZJiXKtXULJiKaUrl/lD3kNCCOk/mLg77ydk4JDypHEC8Pl8wTZBcAKEPuZFaGNeTlWb8NHjyHzmUXyZGVjjW1G6ZgV5n3+MLbUtsTf/PSA2SrKMBxugY5crh66H2SWivDnct/oWADKfcxF3178CFtm174hOer5O10SFFqEnvuYvm1VkCUZ1C9wURPQd8yK0MS9CG3Mj9GmeNGrnvGT5Erz79+DeshHvgX20/fw7JMX/liwJibBxPfb2HXB064mzVz8cPfucMIlbGYaq4t62GdfaVZSuXYV7ywbQNGxt2hE+Zjwhg4bi7N4bydKo/3z1xoYNG+jevXuwzRBUg9DHvAhtzMupahM6bCSSw0HRrz8RPf1KdLcb15oV6IX5AbHPu38v7h1bmdqyFZ61BRQm96x0PMwhocoV+7uLfvyO6MuvwRrfKiD3/2WzyqdLfYzvbeHuidXvo9d0g69X+xjeWalRLfSaIvqOeRHamBehjbkR+jRPGrV3efjJBwk/xkH27NmFo6O/fmvLq28i9pY7kZ0hJ72Ooet49+32O+NrVuLauA7DVYocGoazT39ib7mTkEFDAzaJEQgEAkHzQnaGEDpsJEU/fkeLi6/AlpIKgPfQQQzDOOUV7NLVy8l+8yVigBExw1ncpXel42EOUKXKX/l6UREE6HttW7oGQNfEE+8hX7JDIz3P4IFJgUkEJxAIBAJBU6JRO+fW5FQi+vTD0b0Xjm49sSa3Lj9miW5Z7XmGpuHdtwfXpvW4N63DtW41Wn4eks2Oo3tPoi+5CmffAdg7dK4UKi+oGZMmTQq2CYITIPQxL0Ib8xIIbSInTCLtlx9xrV+Ds0dvUBQMtws1MwNrQuIpXVsryC//uWPBRtaFVnZ+FVnCYwvnwcEf0iNnBdN2vY4WoFV73TDYnuEPoz+Rc24YBl/86aN3a5nOrQL73Sr6jnkR2pgXoY25Efo0Txq1c9769RlERESctJ3u9eDZvtXvjG9ch3vLRvSSYrBYsHfsQsTZ5+HsOxBH954BLWvTXFm0aBFnnXVWsM0QVIPQx7wIbcxLILRx9OyDtXUbCr75kpA+/bF37Ixn2xZcG9cHzDlfE3s6iq4S4jze+VWsClnWZPKK9wDUKLKsJhzMMSjxgMMKbWKrd843HtTZmq7zxEWB/54Vfce8CG3Mi9DG3Ah9mieN2jmvCsMwUDMzcG/fgmfbFtxbN+HesRV8PqSQEJzdehE19RKcPfpg79wN2eEItslNjtzc3GCbIDgBQh/zIrQxL4HQRpIkoiZN5chrz+PLSMPZq5/fOd+whoixZ5/Stcuc8/e63o+q2BhnOT5M3mK3gQc8Ficpb/4Pe4dOp3TPMrak+UPaOybIKHL14fmfLvXRuqXEoPaBj0gTfce8CG3Mi9DG3Ah9mieN3jnXCvL9jvj2Lbi3bcG9fQv60UmKJT4BR+fuxFx3Js6efbC1bV+eME5Qf7RsWf2WAkHwEfqYF6GNeQmUNuFjJ5Lzwdvkz55JyKCh5H/xMe4Na0/5ulpBPpokoyr+8mSRzuOdZGtYCHgM9KT22DuknPI9y9h40B/S3iOleqd75R6VlXs0Hp5iRw5QhvhjEX3HvAhtzIvQxtwIfZonjdpT3X/dpThzjwAgR0Ti6NyNyHMvwNGlG/ZOXWuUmV0QeIYPHx5sEwQnQOhjXoQ25iVQ2sgOB1FTppH7yQwizr0AOSwca1IKuseNbK97JJdWkI9Xdpb/HhtxvAPcIkTiYI6By2sAYGhqQB5YbzjgXznvlVJ1SLumG7z1i5ceyTKnd66fPC6i75gXoY15EdqYG6FP8+TEaVVNTuhpw4j/12Ok/u9L2s6eT+KTL9LyyusIHTxMOOZB5Ouvvw62CYITIPQxL0Ib8xJIbaImT0MOCaXgy09p++WPJD754ik55gDewmK+an+d/xfDoEP88V/vydF+h32/1pJnb5lB5tOPnNI9y3jmYgd3T7TRI7lqx3v+epW9RwxuGmMLWF31vyL6jnkR2pgXoY25Efo0Txq1cx5zzc2EnzEWa6ukevvCFwgEAoEgkMghoURf+jcKf/wOz64dp3Qt3e0m+93XWTXufhYlnet/UZJoF3e8o3xssrb5SRdxuDAw35tJ0TLje1sJsR9/vaxCnbd/8zK2h4UuiaL6iUAgEAgEJ6JRO+cCc9KnT59gmyA4AUIf8yK0MS+B1ibyvAuwtWnHkZefwVBV1NycOl0n96N3yf/8I/atrnDyZckgvIo9539dTT/stmMYBoam1eneJ0PTDZ7+xoPTKnHzWFu93KMM0XfMi9DGvAhtzI3Qp3kinHNBwJFl8bEyM0If8yK0MS+B1kZSLMTdeT+endvZO20i+6ZNxJd+qNbX8ezYBkCxNbL8NVsVmdoBerZWsFuM8t/T8wz2ThlHyeKFtb6v/3ydO/7n4scNviqPf/Gnjw0HdO49z05EFQ8LAonoO+ZFaGNehDbmRujTPBGqCwLOmjVrgm2C4AQIfcyL0Ma81Ic2ji7dib78avTCAgBy//dura8RNfUSAI44WwFgRaVvm6rDx2VJol28QrJ7/9FzEtGLi/Ae2FcH62HeepVNh3R+23L8yvvCLSrvLfQxfaiVPqn1H84u+o55EdqYF6GNuRH6NE+Ecy4QCAQCQZBocenVOHr0BqDol/l49uys0Xnu7VvZd8UFGG43cmQUR5yJAPiwcE7f6jOw90lVyLHFAbAmbgSbowfUyTnXdIMfN6gAnN278v1W7VF56hsPZ/ZQ+NtIa62vLRAIBAJBc0UyDMM4eTNzUVhYSGRkJAUFBURERATbHMFfKCoqIjw8PNhmCKpB6GNehDbmpT610V2l7Lt0EnpRIc5+A0l65tWTnnPwtqvxbNtCnj2G+L/fy9+W9wUgKgS+uD0ERa46jPxgjs5Vb7loVbKfjNBUAB7f/y+GvPVSrWz+dbPKE197iHTCZ7eFlIfS/7TRxws/eOnXRuHfF9qxKA2TrFX0HfMitDEvQhtzI/QxJ/Xth5pi5by4uJj/+7//IzExEYfDQZ8+ffjss8+CbZagjqxYsSLYJghOgNDHvAhtzEt9aiM7Q0h4+GkAXGtWcvC2a9BKiiu1MQwD9UiW/2ddx7t/HwbwVbvryh1zCYNxvazVOuYAKS1leiTLxCqF5a8toicbPv6GwnnfkPHv+9CKi05o774jOi/M8wBwTl8rNouE22fwxs8envnWy5ndLTxyQcM55iD6jpkR2pgXoY25Efo0T0zhnE+ZMoUPP/yQhx9+mHnz5jFw4ECmT5/Op59+WmV7j8dT6X+BefB4PLzxxhtCG5Mi9DEvQhvz0hDahPTuR9gZY/3327aZA1dNpWjBPEqWLyXz+Sc4/Nj97LvkPHI/mYFn9w42hPTk5pE/siJhDABxciF2q8TUQdWHtJdx7Sgbm5w96F68HoCfUi/mzv1nsOKdLyn54zcK5nxe7bnFboOHv3Tj8kKfVJlLh1tYvF3lmrddfLNG5eYxNv4x0VZtUrr6QPQd8yK0MS9CG3Mj9DEv9e2HBj2s/YcffmDixIl8+umnTJ8+vfz1cePGsXnzZg4cOICiVE4mc+jQIVJSUjh48CDJyckNbbLgBIgtB+ZG6GNehDbmpaG0MXSdkiULKf79F7SiIlxrKlZNNEkmLbQdycV7sLZO5e7kp8izx5Yfl4BHL7QzrNPJnXOAjxd7mbGocpb11xeexf7wTvyZMI7IseMZ7lrB7j83M+K8PoSqJYSdPgqvClP+C04bTBlo5eeNKgdzDQa2U7h1nI3k6IZ/5i/6jnkR2pgXoY25EfqYl/r2Q2v2LV6PzJkzh7CwMKZOnVrp9b/97W9ccsklLF++nKFDhwbJOoFAIBAIAo9uGBgGqBr4NLBZwGaRCTt9NKHDR7Fit8baTbmkr9rEHiOBjNBULLqXMw9+Sb+sRZSmhpZfyyL7HfPTOtT8K/2y4TYinPDKj14M4KIdr7Ezqgcv9Xne32ALfMswiB/G28vhmSUXEfXc4wC0G/QK25xd+GARXOuaTc9WGq0UB5aNcRTLMkrLWNB1lKgW2JJb+9+vy4Wh+pBsNjBAslrBMODow3dJariVdoFAIBAIzErQnfNNmzbRtWtXLJbKpvTq1av8eHXO+TdrJaIOeI97PS5CZkyPiut9ucKHR606QCA6TGJ8r4pssl+v9lHiqbptpFNiYt+Ktt+v9VHgqrptqF3i/P4Vbedv8JFbXHVbu0XigkEVbRdsUskq1Ktsa5ElLjqtou1vW1TS86puC3DpMFv5z39sUzmQU33bi06zYj26R3DpTpW9WdW3nTLQitPmb7tit8rOw/62Ho9E6sh/MHuVhN3u1+b8/lbCHP62a/ZqbE0/vuxOGRP7WIkK9bfdcEBj48Hq257Vy0JMuH+VZkuaxtp91bcd08NCfKS/7fYMjVV7qm87squlfPVnd6bGn7uqbzu8s4XUGH/b/dk6i7er1bY9rYNC+3j/RPRQrs7vW6tvO6CdQudW/raZBToLNlXftk+qQvdkf9vsIp3566tv275lxc/5JQbfrq26PjFAtySF/m391y12G8xZVX3bTq1kBrf39zmX12DW8urbto+Xy1f3fJrBzKXVt02NkRnZ1UKx26DEY/DliurbJkRJ5dc1DH9fVqv5CMeES4zoUjFGfLfGh6eaP1uLUIlR3SrazluvUlrNGBHmlBh7zNjz8yaVIpffCQM49qwQG5zdu6Ivz1sj0encF3lroYTVWjlUymbx7+0tO3/RNpXsoqptUGQ4r1/FdZfsUDlccExbo7IdFwysaLtsl0pabvXBVOf1t5TvI161R2Xfkcp/4GPjsM7pZ8FhPdrv92nsydIr7n3M38MAJvSxEGr3t11/QGN7uv+60jHXNY7+f3ZvCxEh/iObD2lsPqSjG6AbFfeXJZAkGNvDQnSYv61/jNAp8wE13Z9xHPxtx/WwkBAll9uwao+GIvsdZwyJvtf+yENzJDRcjO9loU3s0fEkXWPhNg2X18Bmkcr/L/UYWC1w5ek2wh0SmgGbDqrMWali4L+upvtt1g0Id8DVI634NIlSr84P6zSyCkMhZHD531SVbaxMOJMfW08DSSYlWqJNrMzfRlhJja19ubLz+tvonWrhxw0q2xNu4McMD2HefIptUce1XZh0PpP2vg/AuMNfM6bbIfo4M7EWbsP11XJyqri+HBlFzI13ICkW1CNZ5LxzNNGdJPmdcsNAstowVJXoS/+Gs08///vMPkLOO6+je1zIoeEYbhdySCi6x43sDCFi/Lk4uvUE/HXe8+Z+wdeDepDzf9eRb3eAriEpFgxDJ3TYSEL7+f+Gnt07KPzpeyRZxtB1JIsFdA0UC2gaYSPPLL+uLyOdgu++QpLlclvRdf95skzIwCE4e/f3t806TOG3X/rfl6wglUX7HW3v7NOfkP6D/O8tL9ffVj/66ZcV/z0kCQwDR7eehPT326sVF5H/1Wf+Bxfl/2T/eYaBvVNXQgf750e620X+rE+PaVf5YYe9XQdCh4wAwFBV8j7/6GiTY9v6+4M1pQ3hI0aXn5v7yftHf5IqOuXR82yJyYSdMaa8bd7nH2FoFd+ZPp+PZ7u3o+CVZ/AlpRA+dkL5sfyvPsPwuKv45IASHUPEWeeU21bw9Sz0kpKKz0+5GRJKRCSREydVtP1+bnl5wr8ih4YRed6F5e+jcP63aLk5x18XkOx2Wl57C7LN7r/ut1/hO5z2lyv6z5EsFlr+7cbyVwvnf4f34L4qbQCIue7W8p+LFszDs3d3tW1bXnWD/2EWUPz7L7h3ba+2bfQlVyE7Q/xtly7CvXVTtW0tZ59f/nPJ8qW4Nq2rtm3UlGlYWvgnEKVrVuJau6ratpHnXYAl1l8RwrVxHaUrl1XdUJKIGH8e1lb+ShPuLZsoWb642uuGjzkbW4o/iaV75zZK/vit2rZho8Zib9sBAM/eXRT/9nO1bUNPH4WjYxcAvAf3U7RgXvVtTxuOo2sPwD9GFP74bbVtQwYMxtmjDwDqkSwKvp9TbVtn7/6E9B3gb5uXQ8HXs/F4PPxfu2SKZ36Az24vb+vo3ovQgUMA0IoKyf9yZrXXdXTuRuiQ0wH/A9K8z/9XbVt7+06EnT4KAMPnI/eTGdW2tbVpS/jRbVgAOR+8XX3b5BTCx5xd/nvux+9jqFVPuKwJrYgYf27573mf/Q+9mtBxS8sYIs+ZXP57/pcz0YqLq2yrREYRNaliETh/7iy0gvyq24aFEXVBRSR3wXdzUHOyK7Upya/63EARdOc8JyeHdu3aHfd6dHR0+fG/UhaJ/8niEiz240PoeqTIDGrtLP/9g19KKHRVff+OCTJD21S0/fi3UrIKq56cprSUOL19SPnvMxeVcjCn6rZxERKjOla0nb3YVe7A/pUIJ4ztUrEKMmeZi00Hq25rt8L4bhVtv1vuZtXe6p3Hc3tWtP1hlZulO07gwHYOKXe4f17j4dfN1Tt5p7cLKXeif1vn4YdjHMLUEXfy/+3de1RU9doH8O/MMAyXAbkYIOoLnTgiIGgqQuU1xUDsLT36mrdMsOVRCy9nrVYdbxh5QtOSo3hHpDCqJSkeD4YBakZeEOuEaR6CUhNEHUS5iDDO7/0DnZxgRmAYxpjvZ61Zy/nNs/d+No8b9rNvk3K4GkDjRjKopy3c7+30flVYb7DJC+pmC+m9ZvebH+qRdkx/rG9XG1jfa2BP/FiPnUcMNHldbGAraYwtON+ArblND+rc52GngOO9g0XfFTdga5b+WGdrBZytG2N/+FmNrVn67z+xkVjjMdvGP7DnLxiOlTxrjW72jbFFl+5ia1bzOzAA8MowOXo6Nh6E+aXsLrYd1B87vn/j/6tbt27hRr0G2w/q2TAAjBsox59dG+dbXmk4dkxfK/g91vjHo7JGIOnLWr2xzwZYIdCjMfZ2veHYp3vJ8GR3G3xyrB678vTX976Eh0b8ZmNmy2O3ZrU8dmd2y2N3HdZ979FvEvafav6Py6dHWz7f9LyWx/7rRMtj97fi2TQH9O+7NXGwoOWxOd+1PDa3FbHf/GD4c4dugfi2uLE23+vfj25iafOPTmniRh3wfgYgt2o8GFNTd++ksgCs5YCNXII/PSYFJPaY1acB/j1k6GJ3v5mox61bhuaun7M18NJAAANl0AhbXLupwaVrNai/rsKvpdXoefsCblwoxRMuZbhd5Q6JTAav6ydgdbYE1fX10FTfwl3NvaMMv79LTnUdN1cubX7BDfe253s7XlVJG5uPa2YfoGLjB03GetopUNlMg6P68SyQtEnv+j/o2vfftigOAHCqFRvOiVZskF/ltjz2cDaw9eFP9gcA5GQB2xJbPu8dLfuZAQCSNxv8eORjzriec++X6IfbWz7f1B0Pj7nn0sc7Wx77if4G5fc0/QfB1r/xZFFp1r9R98N/mo2TKGwg/8sU7fuy7AOoLdD/f8R60svaf1/JzUbNsSN6Y63+dyKkto37qVeP5KDq0EG9sbKwSMicnAEA178+gpsHMvTGuvQPBdC4P9Bw/GtU7v1Mb6wY9AwUssZ9kor8Y7hh4GfYvd8A2ChsAAA3CvJR8VGS3thuvfxgZ68EAFT+5zRUBv5/eHj9CfZdGtftVuH3uGZgvu4e3aF0bTxAUH3uLMoNxD7m5ApH98YDBDVF53HFQA6uNnZw6t54NVBtSRHKUrbpjXWBFM7/09jf1F38BZcNxDq/dAcuT/QCANz59Vf8ei/25f9xR/nvftZOL/4fXH0DAAAN5WW4aGC+XSJeQNeAxq/qvFt5w2Csw4jRcLt3wFFz+zYupuhvuO2fGgbR/7cDx4Zi7QaEoNugZ36LTd2h96CcTUBf4Olhv8WmfQjNrcpmYxU+vpAMHal9f+mzVKivljcba93TG9Jnn9O+v/z5p3oPnlm5uUMaFvlbbMZu3PndAbFqdWMvZao7w81+z3mvXr3wxBNP4MAB3SNVZWVl8PT0xLvvvos333xT57OSkhI88cQTHZkmEREREREREYqLi5s9wWwss585d3V1bfbseEVFBYDfzqA/yNvbG8XFxZDL5Tr3qSkUCigeuPSDiIiIiIiIqC3u3Lmj82R2IQQaGhrg7e1tkuWZvTkPDAxEWloa1Gq1zn3nhYWFAIA+ffo0mUYqlZrkSAURERERERGROZj9e87HjRuH6upqpKen64ynpKTA09MTISEheqYkIiIiIiIi6hzMfuY8IiICYWFhmDNnDm7dugUfHx+kpaXhiy++QGpqapPvOCciIiIiIiLqbMx+5hwAPv/8c0yfPh1Lly5FWFgY0tLS4ODggGnTpiE2NrZF89i5cyckEkmzrytXrph2BSxAVVUV3njjDYwePRqPPfYYJBJJi2tzX0ZGBoYNGwZHR0fY29sjICAAW7fqf8IjtYwxtRk+fLje7YbbTvswdts5dOgQwsLC4ObmBqVSiaCgIPzzn//E3bv6v3mBWsbY2mRlZeGZZ56Bra0tunTpgueffx4//PCQx75Ti+Tm5iIqKgq9e/eGvb09unfvjhdeeAEFBS17tP/Vq1fxyiuvoGvXrrCzs8NTTz2FnJwcE2dtGYypza+//ooFCxZg2LBhcHJygkQiwc6dO02ftIUwpjaff/45Jk+eDB8fH9ja2sLb2xtTp05FUVFRB2RuGYypT3Z2NsLCwuDp6QmFQgE3Nzc8++yzyMxsxVfPkF7G/s150JIlSyCRSJq9NbslHonmXKlUIiEhAcePH4dSqUT//v0xadKkNs0rOTkZx44d03m5uro+fEIySKVSYevWrbhz5w5efPHFVk8fHx+P8ePHo0+fPvjss8+wb98+zJ07F/X1+r+mjFrGmNps3LixyfaSk5MDuVyO0NBQeHh4mCZpC2JMfbKzszFq1Cio1Wps27YNe/fuxfDhwzF//nwsWrTINAlbEGNqk5GRgYiICLi5uSE9PR2bN29GUVERhgwZguLiVnzXGjVr06ZN+OWXXzB//nxkZmYiISEBV69eRWhoKHJzDX/d2J07dzBy5Ejk5OQgISEBGRkZcHd3R3h4OI4c0f+VVdQyxtTmp59+wq5du2BtbY0xY8YYjKXWM6Y2q1atQm1tLRYvXowvvvgC77zzDr799lv079+fBx3biTH1UalUCAgIwAcffICDBw9iy5YtkMvliIyMRGpqagetQedlTG0e9N1332HNmjVwd3dvezLiEaLRaIRGoxFCCHHt2jUBQCxfvrxF0yYnJwsAIj8/34QZWi5janPq1CkhlUrFqlWrTJih5TKmNs3ZuXOnACC2b9/eThlaNmPqM3XqVKFQKER1dbXO+OjRo4Wjo2N7p2pxjKmNr6+vCAoK0k4vhBC//PKLsLa2FlOmTDFFuhalvLy8yVhVVZVwd3cXI0eONDhtYmKiACC++eYb7VhDQ4Pw9/cXgwYNavdcLY0xtbl796723/n5+QKASE5Obu8ULZYxtWlu2suXLwu5XC6io6PbLUdLZkx9mlNfXy+6d+8uhgwZ0h7pWbT2qE1DQ4Po16+fiImJEcOGDRMBAQFtyuWROHN+3/1LaenRY0xtNmzYAIVCgddff72dsyKg/bebpKQkKJXKNl+9QrqMqY9cLoe1tTVsbW11xp2cnGBjY9Me6Vm0ttZGpVLh/PnziIiI0Jney8sLffr0wd69e3nbgZHc3NyajCmVSvj7++PSpUsGp92zZw98fX3x1FNPacesrKwwbdo0nDx5EpcvX273fC2JMbWRSh+p3c5Ox5jaNDetp6cnevTo8dBpqWWMqU9z5HI5nJycdL7titqmPWoTHx+PiooKrFy50qhcOt1vybFjx0Imk8HFxQXjx4/HmTNnzJ2Sxfvqq6/g5+eH9PR0+Pr6QiaToUePHnjzzTd5WfsjpqioCEePHsVLL70EpVJp7nQs3l//+lfU19cjJiYGpaWlqKysxEcffYQ9e/bgjTfeMHd6Fuv+7y2FQtHkM4VCgdraWl7abgI3b97E6dOnERAQYDDuzJkzCAoKajJ+f4yX6La/ltaGOp4xtSkpKcGFCxdYVxNqbX00Gg3UajVKS0uxfPly/Pe//8Xf/vY3E2dpmVpTm7Nnz+Kdd97Bpk2bjN5/7jSHWjw8PLB48WKEhobC0dERhYWFiI+PR2hoKPLy8tC3b19zp2ixLl++jGvXriEmJgZxcXHw9/dHTk4O4uPjcenSJezatcvcKdI9SUlJAIDo6GgzZ0IAEBISgtzcXEycOBGJiYkAAJlMhnfffZd/jM3I3d0dLi4uyMvL0xmvrKzUHhBWqVTmSK1TmzdvHmpqarB48WKDcSqVCi4uLk3G74+xNu2vpbWhjtfW2qjVakRHR0OpVGLhwoUmyo5aW58xY8YgKysLAODo6IhPP/0UkZGRpkzRYrW0NhqNBlFRURg/fny7PEuj0zTn4eHhCA8P174fOnQoIiMjERgYiGXLliEjI8OM2Vk2jUaDqqoqpKWl4aWXXgIAjBgxAjU1NVi3bh1WrFgBHx8fM2dJarUaKSkpCAgIQGhoqLnTIQAFBQUYN24cQkJCsGXLFtjb2yM3NxdLlixBXV0dli5dau4ULZJUKsW8efMQFxeHuLg4zJ49G7du3cKCBQtQW1urjaH2s3TpUuzatQvr16/HgAEDHhpv6HYF3j7XvlpbG+o4ba2NEALR0dE4evQo0tPT0bNnTxNmabnaUp/169ejsrISZWVlSE1NxaRJk5CSkoLJkyebOFvL0pravP/++ygqKsK+ffvaZ+FtulO9A7THg62EECI8PFy4ubm1T1IkhGh9bTw8PAQAUVFRoTOelZUlAIhPP/3UBFlaJmO2m4yMDAFAfPDBB+2eFzVqbX1CQkJEYGCgUKvVOuPLli0TUqlUFBcXmyBLy9Ta2jQ0NIiFCxcKa2trAUAAEJGRkWLWrFkCgLh06ZJpE7YgsbGxAoBYuXJli+I9PDzExIkTm4zv379fABBZWVntnaLFam1tHsQHwplWW2uj0WhEVFSUkEql4qOPPjJRdmTMtvOg8PBw4ezsrPOwRTJOa2pz4cIFYWtrKxISEsSNGze0r2eeeUb4+fmJGzduiNra2lYtv9Mf2hdC8AyGmTV37x/QWBuAZ5geFUlJSbC2tsb06dPNnQrd891332HAgAGQyWQ648HBwdBoNDh37pyZMiMrKyu8//77UKlU+P7771FaWor9+/fj4sWLePzxx9GjRw9zp9gprFixArGxsYiNjcXf//73Fk0TGBiIwsLCJuP3x9r63bOkqy21oY7R1toIITBr1iwkJydj+/btmDZtmgmztFztue0MGjQIN27cwLVr19opO8vW2tqUlJTg9u3bmD9/PpydnbWvvLw8nDt3Ds7OznjrrbdalUOn7op+/vln5OXl8RJdM/vLX/4CADhw4IDOeGZmJqRSKYKDg82RFj3gypUryMzMxIsvvghXV1dzp0P3eHp64tSpU02e/H3s2DEAYAP4CFAqlQgMDES3bt1w+vRp5OTkYP78+eZOq1OIi4tDbGwslixZguXLl7d4unHjxuHHH3/EiRMntGNqtRqpqakICQmBp6enKdK1KG2tDZleW2sjhMCrr76K5ORkbNmyBTNnzjRhlparPbcdIQSOHDkCJycn7ru1g7bUpl+/fjh06FCTV9++feHt7Y1Dhw7htddea1Uej9w95wcOHEBNTQ2qqqoAND79bvfu3QAaH4JgZ2eH6OhopKSkoLi4GF5eXgCAUaNGYejQoQgKCtI+EG716tWQSCSIi4sz2/p0Jm2tzcyZM7FlyxbMnTsX169fh7+/P7Kzs5GYmIi5c+dq46jt2lqb+1JSUqBWqzFr1qwOz90StLU+CxcuRExMDJ5//nnMnj0bdnZ2yMnJwdq1azFq1Cg+6LIdtLU2hw8fRn5+PoKCgiCEwMmTJ7Fq1SqEh4e3+g8xNbV27VosW7YM4eHhiIyMxPHjx3U+v3/QvbnaREVFITExERMnTkR8fDzc3NywceNGnD9/HtnZ2R2+Lp2NMbUBoN2+SkpKAACnTp3SPt14woQJHbEKnZYxtYmJiUFSUhKioqIQGBioM61CocCTTz7ZcSvSSRlTnxdeeAF9+/ZFv3794OrqitLSUuzcuRNHjhxBYmIiv07NSG2tjZOTE4YPH95kfk5OTlCr1c1+9lCtvxLftLy8vLT37/3+9fPPPwshhJgxY4bOeyGEWLBggfD39xcODg7CyspKeHp6imnTponz58+bZ0U6obbWRgghVCqVmD17tnB3dxdyuVz06tVLvPfee7xHpp0YUxshhOjVq5fw9vYWGo2mYxO3EMbUJz09XQwePFh07dpV2Nvbi4CAABEXFyeqq6s7fkU6obbWJi8vT4SEhAhHR0ehUChEnz59xJo1a0R9fb15VqSTGTZsmN66PLjrom+7uXLlinj55ZeFi4uLsLGxEaGhoeLLL7/s4LXonIytTUumpbYxpjaGfhd6eXl1/Mp0QsbUZ9WqVSI4OFg4OzsLmUwmXF1dxXPPPSf2799vhjXpfIz9vdbc/AICAtqUi0SIezf+EhEREREREZFZdOp7zomIiIiIiIj+CNicExEREREREZkZm3MiIiIiIiIiM2NzTkRERERERGRmbM6JiIiIiIiIzIzNOREREREREZGZsTknIiIiIiIiMjM250RERERERERmxuaciIiIiIiIyMzYnBMREZlJTU0NvLy8MHnyZFRXV6O6uhpqtbpDlv3222/D398fGo2mVdONGzcOtra2qKys1BszdepUyOVylJeXIykpCd27d0dNTY2RGRMREXVubM6JiIjMoLy8HEqlEhcvXsQnn3wCBwcHODg44ODBgyZfdmlpKVavXo23334bUmnrdgWio6NRV1eHjz/+uNnPb968iT179mDs2LFwd3fHjBkzYG9vj9WrV7dH6kRERJ0Wm3MiIiIzsLe3x6pVqwAASUlJOHr0KI4ePYoRI0aYfNkJCQlwcnLC+PHjWz1tREQEPD09sWPHjmY/T0tLw+3btxEdHQ0AsLKywuzZs5GQkIDa2lqj8iYiIurM2JwTERGZgVKpRENDAxQKBYKDg7Fu3TqMHTsWXl5eePXVV1FXV6cTf+nSJTg6OuL1119vdn43b96ERCLBnDlzDC63vr4eSUlJmDJlSrNnzYuKijBlyhS4ublBoVDAz88PiYmJ2s9lMhlmzJiBgoICFBYWNpk+OTkZ3bp1Q0REhHZs6tSpuHXrFj755BODuREREVkyNudERERmkp+fDzs7O8ycORPPPfcc0tPTMWHCBGzfvh1btmzRiY2JiYG1tTVWrlzZ7Ly6dOkCT09PHD9+3OAyT5w4AZVK1ewZ+rNnzyI4OBhnzpzB2rVrsX//fkRGRiImJgYrVqzQxkVFRUEikTQ5e3727FmcPHkSM2bMgEwm0457eHigd+/e+Pe///3QnwkREZGlsjJ3AkRERJYqPz9fe5+5i4sLAODpp5/Gtm3bUFRUpI07efIk9u7di3/84x9wdHTUOz9vb2+cO3fO4DKPHTsGAOjfv3+TzxYtWgQHBwd8/fXX2uWEhYXhzp07iI+PR0xMDJydneHj44OhQ4ciNTUVq1evhlwuBwBtsx4VFdVk3v3790d2drbB3IiIiCwZz5wTERGZQVlZGUpLS7FgwQJtYw4AUqkUd+/ehYeHh3Zs06ZNkEqlOk1vbm4u0tLSdOZZU1MDIYTB5ZaWlkIikaBr164643V1dcjJycG4ceNgZ2cHtVqtfY0ZMwZ1dXU6Z+Wjo6Nx/fp17Nu3DwCgVquRmpqKIUOG4M9//nOT5bq5ueHq1asd9jR6IiKiPxo250RERGaQn58PAAgPD9cZLywshBACQUFB2rEvv/wSAQEBcHd3147FxsZi9+7dOtOWl5fDx8fH4HJv374NuVyuc9k5AKhUKqjVaqxfvx5yuVznNWbMGADA9evXtfETJkxAly5dkJycDADIzMxEeXm59kFwv2djYwMhRJN76YmIiKgRL2snIiIyg/z8fNjb28PX11dnvKCgAAAwYMAAAI3N9OXLlxEcHKyNqaiowPHjxzFv3jzt2JkzZ3DlyhVMnz7d4HK7du2K+vp61NTUwN7eXjvu7OwMmUyG6dOn68z3QY8//rj237a2tpg8eTK2bduGsrIy7NixAw4ODpg4cWKz01ZUVEChUECpVBrMj4iIyFKxOSciIjKD/Px8PPnkk02emH769Gm4u7uje/fuAIC7d+8CgM4Z582bN0Mmk6G+vl47lpCQAKlUipkzZxpcbu/evQEAxcXFOmfn7ezsMGLECHz77bcICgqCtbX1Q9chOjoamzdvxnvvvYfMzEy88sorsLOzaza2pKQE/v7+D50nERGRpWJzTkREZAanTp3CtGnTmowXFBRg4MCB2vdKpRK9evVCbm4uduzYgfr6eqxZswavvfYaPv74Y0REROCrr77C9u3bsWjRIvj5+Rlc7vDhwwEAx48f12nOgcYGf/DgwRgyZAjmzJkDb29vVFVV4aeffsK//vUv5Obm6sQPHDgQQUFBWLduHYQQei9p12g0OHnypN7PiYiIiPecExERdbiSkhKoVCrtpev3NTQ0oLCwsMn4hx9+CF9fX8ydOxeJiYn47LPP8NZbb8HHxwcTJkzA7t27sXr1aqxZs+ahy+7ZsyeGDBmCjIyMJp/5+/vj9OnT6NOnD5YsWYLRo0cjOjoau3fvxsiRI5udX3R0NIQQ8Pf3R0hISLMxhw8fxs2bNzF16tSH5kdERGSpJOJhj3UlIiKiTiU9PR2TJk3ChQsXtJfPm9L06dNRUlKCvLw8ky+LiIjoj4rNORERkYURQuDpp5/GgAEDsGHDBpMuq7i4GH5+fsjNzcXgwYNNuiwiIqI/Ml7WTkREZGEkEgm2bdsGT09PaDQaky7r4sWL2LBhAxtzIiKih+CZcyIiIiIiIiIz45lzIiIiIiIiIjNjc05ERERERERkZmzOiYiIiIiIiMyMzTkRERERERGRmbE5JyIiIiIiIjIzNudEREREREREZsbmnIiIiIiIiMjM2JwTERERERERmRmbcyIiIiIiIiIzY3NOREREREREZGb/D/tkAi4TiRl7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1, figsize=(12, 4))\n", "\n", "ax.plot(pl_spectrum[0] * 1e-3, pl_spectrum[1] / (np.sum(pl_spectrum[1]) * abs(pl_spectrum[0][1] - pl_spectrum[0][0])) * 1e3,\n", " color=red, linewidth=1, linestyle='-', label='PL, 1D CCD')\n", "ax.plot(abs_spectrum[0] * 1e-3, abs_spectrum[1] / (np.sum(abs_spectrum[1]) * abs(abs_spectrum[0][1] - abs_spectrum[0][0])) * 1e3,\n", " color=blue, linewidth=1, linestyle='-', label='Abs, 1D CCD')\n", "\n", "ax.plot(spectrum_pl_dis[0] * 1e-3, spectrum_pl_dis[1] / (np.sum(spectrum_pl_dis[1]) * abs(spectrum_pl_dis[0][1] - spectrum_pl_dis[0][0])) * 1e3,\n", " label='PL, HR', color=red, linestyle='--')\n", "ax.plot(spectrum_abs_dis[0] * 1e-3, spectrum_abs_dis[1] / (np.sum(spectrum_abs_dis[1]) * abs(spectrum_abs_dis[0][1] - spectrum_abs_dis[0][0])) * 1e3,\n", " label='Abs, HR', color=blue, linestyle='--')\n", "\n", "ax.set_xlim((1.5, 2.4))\n", "ax.set_ylim((0.0, 6))\n", "\n", "ax.legend(fontsize=12, loc='upper right', edgecolor='black')\n", "ax.grid(color='gray', linestyle='--', linewidth=0.5)\n", "\n", "ax.tick_params(direction='in')\n", "ax.xaxis.set_ticks_position('both')\n", "ax.yaxis.set_ticks_position('both')\n", "ax.set_xlabel('$\\hbar\\omega$ (eV)')\n", "ax.set_ylabel('PL (arb. unit.)')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The 1D CCD approach shows generally good agreement with the results from Huang–Rhys theory, although it misses some of the finer spectral features. Nevertheless, the 1D CCD provides a powerful and practical approximation." ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:base] *", "language": "python", "name": "conda-base-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 4 }